The morphology and distribution of neurons immunoreactive (ir) to parvalbumin (PV), calretinin (CR) and calbindin (CB) were studied in the primary visual (V1) and auditory (A1) cortices of hamsters. Cortical cell populations were labelled immunohistochemically using a glucose oxidase-diaminobenzidine-nickel combined revelation method. Quantitative analysis revealed significant differences between V1 and A1 in the density and distribution of their neuronal population. CBir cells exhibited several typologies in both cortical regions. Most cells were multipolar even though many of them had bitufted or bipolar morphologies. These cells were distributed in layers II/III and in layer V of both A1 and V1, but were more numerous in layer V of V1. CRir cells were of the fusiform type with long bipolar dendritic arbours. These were similarly distributed in both cortices with a peak in superficial layers II/III. PVir cells were also found in both cortices and had round or oval-shaped somata with multipolar processes. They were mostly located in layer V for V1 and in layers III/IV for A1. Visual and auditory primary cortices can thus be differentiated on the basis of their immunoreactivity to specific calcium binding proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-004-2151-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!