Rare-earth silylamide complexes, Ln[N(SiMe3)2]3 (Ln = Y, La, Sm, Yb), effectively catalyzed the coupling reaction of isocyanides with both aliphatic and aromatic terminal alkynes under mild conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b414302g | DOI Listing |
J Am Chem Soc
January 2025
Instituto Universitario de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain.
Due to their conductive properties and optoelectronic tunability, MXenes have revolutionized the area of electrocatalysis and active materials in supercapacitors. In comparison, there are only a few reports on MXenes as thermal catalysts for general organic reactions. Herein, the unprecedented catalytic activity of TiC MXene for the hydroamination of alkynes is reported, overcoming the limitations of poor activity, lack of selectivity, and stability, which are generally encountered in the solid catalysts known so far.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Electronic address:
Zein and its complexes have been considered as promising carriers for encapsulating and delivering various biological active ingredients, however, there still have some issues about Zein-based drug delivery systems should be considered, including poor colloidal stability, low drug encapsulation efficiency as well as rapid initial drug release, and uncontrollable release. In this work, we reported for the first time that hyperbranched polymers (HPG) functionalized Zein with terminal alkyne (Zein-HPG-PA) can be used for loading anticancer agent curcumin (CUR) via a facile phenol-yne click reaction. The resultant product (Zein-HPG-PA@CUR) displays high drug loading capacity, small particle size and excellent water dispersibility.
View Article and Find Full Text PDFAsian J Org Chem
January 2025
Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.
A one-pot process was developed to synthesize in moderate to high yield a series of 2-substituted indoles and 7-azaindoles starting from 2-iodo--mesylarylamines and terminal alkynes in the presence of CuO in DMF at 90-120 °C. Without isolation of any intermediate, our optimized conditions enabled the introduction of ester, phenyl, hydroxymethyl, hydroxyethyl, -Boc-aminomethyl, and methyl at the 2-postion of indoles and 7-azaindoles. The reaction tolerates a variety of substrates containing halogens, or acid- or base-sensitive functional groups without requiring a Pd catalyst, a ligand, or a base.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, State Key Laboratory of Biotherapy, CHINA.
Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.
View Article and Find Full Text PDFOrganometallics
January 2025
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
The group 1 alumanyls, [{SiN}AlM] (M = K, Rb, Cs; SiN = {CHSiMeNDipp}), display a variable kinetic facility (K < Rb < Cs) toward oxidative addition of the acidic C-H bond of terminal alkynes to provide the corresponding alkali metal hydrido(alkynyl)aluminate derivatives. Theoretical analysis of the formation of these compounds through density functional theory (DFT) calculations implies that the experimentally observed changes in reaction rate are a consequence of the variable stability of the [{SiN}AlM] dimers, the integrity of which reflects the ability of M to maintain the polyhapto group 1-arene interactions necessary for dimer propagation. These observations highlight that such "on-dimer" reactivity takes place sequentially and also that the ability of each constituent Al(I) center to effect the activation of the organic substrate is kinetically differentiated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!