Direct mono-insertion of isocyanides into terminal alkynes catalyzed by rare-earth silylamides.

Chem Commun (Camb)

Department of Chemistry and Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.

Published: February 2005

Rare-earth silylamide complexes, Ln[N(SiMe3)2]3 (Ln = Y, La, Sm, Yb), effectively catalyzed the coupling reaction of isocyanides with both aliphatic and aromatic terminal alkynes under mild conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b414302gDOI Listing

Publication Analysis

Top Keywords

terminal alkynes
8
direct mono-insertion
4
mono-insertion isocyanides
4
isocyanides terminal
4
alkynes catalyzed
4
catalyzed rare-earth
4
rare-earth silylamides
4
silylamides rare-earth
4
rare-earth silylamide
4
silylamide complexes
4

Similar Publications

Due to their conductive properties and optoelectronic tunability, MXenes have revolutionized the area of electrocatalysis and active materials in supercapacitors. In comparison, there are only a few reports on MXenes as thermal catalysts for general organic reactions. Herein, the unprecedented catalytic activity of TiC MXene for the hydroamination of alkynes is reported, overcoming the limitations of poor activity, lack of selectivity, and stability, which are generally encountered in the solid catalysts known so far.

View Article and Find Full Text PDF

Zein and its complexes have been considered as promising carriers for encapsulating and delivering various biological active ingredients, however, there still have some issues about Zein-based drug delivery systems should be considered, including poor colloidal stability, low drug encapsulation efficiency as well as rapid initial drug release, and uncontrollable release. In this work, we reported for the first time that hyperbranched polymers (HPG) functionalized Zein with terminal alkyne (Zein-HPG-PA) can be used for loading anticancer agent curcumin (CUR) via a facile phenol-yne click reaction. The resultant product (Zein-HPG-PA@CUR) displays high drug loading capacity, small particle size and excellent water dispersibility.

View Article and Find Full Text PDF

One-Pot Synthesis of 2-Substituted Indoles and 7-Azaindoles Sequential Alkynylation and Cyclization of 2-Iodo--mesylarylamines and Alkynes in the Presence of CuO.

Asian J Org Chem

January 2025

Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.

A one-pot process was developed to synthesize in moderate to high yield a series of 2-substituted indoles and 7-azaindoles starting from 2-iodo--mesylarylamines and terminal alkynes in the presence of CuO in DMF at 90-120 °C. Without isolation of any intermediate, our optimized conditions enabled the introduction of ester, phenyl, hydroxymethyl, hydroxyethyl, -Boc-aminomethyl, and methyl at the 2-postion of indoles and 7-azaindoles. The reaction tolerates a variety of substrates containing halogens, or acid- or base-sensitive functional groups without requiring a Pd catalyst, a ligand, or a base.

View Article and Find Full Text PDF

Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.

View Article and Find Full Text PDF

The group 1 alumanyls, [{SiN}AlM] (M = K, Rb, Cs; SiN = {CHSiMeNDipp}), display a variable kinetic facility (K < Rb < Cs) toward oxidative addition of the acidic C-H bond of terminal alkynes to provide the corresponding alkali metal hydrido(alkynyl)aluminate derivatives. Theoretical analysis of the formation of these compounds through density functional theory (DFT) calculations implies that the experimentally observed changes in reaction rate are a consequence of the variable stability of the [{SiN}AlM] dimers, the integrity of which reflects the ability of M to maintain the polyhapto group 1-arene interactions necessary for dimer propagation. These observations highlight that such "on-dimer" reactivity takes place sequentially and also that the ability of each constituent Al(I) center to effect the activation of the organic substrate is kinetically differentiated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!