The role of intracellular Ca2+ in the regulation of actin filament assembly and disassembly has not been clearly defined. We show that reduction of intracellular free Ca2+ concentration ([Ca2+]i) to <40 nM in Listeria monocytogenes-infected, EGFP-actin-transfected Madin-Darby canine kidney cells results in a 3-fold lengthening of actin filament tails. This increase in tail length is the consequence of marked slowing of the actin filament disassembly rate, without a significant change in assembly rate. The Ca2+-sensitive actin-severing protein gelsolin concentrates in the Listeria rocket tails at normal resting [Ca2+]i and disassociates from the tails when [Ca2+]i is lowered. Reduction in [Ca2+]i also blocks the severing activity of gelsolin, but not actin-depolymerizing factor (ADF)/cofilin microinjected into Listeria-infected cells. In Xenopus extracts, Listeria tail lengths are also calcium-sensitive, markedly shortening on addition of calcium. Immunodepletion of gelsolin, but not Xenopus ADF/cofilin, eliminates calcium-sensitive actin-filament shortening. Listeria tail length is also calcium-insensitive in gelsolin-null mouse embryo fibroblasts. We conclude that gelsolin is the primary Ca2+-sensitive actin filament recycling protein in the cell and is capable of enhancing Listeria actin tail disassembly at normal resting [Ca2+]i (145 nM). These experiments illustrate the unique and complementary functions of gelsolin and ADF/cofilin in the recycling of actin filaments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC548556PMC
http://dx.doi.org/10.1073/pnas.0409062102DOI Listing

Publication Analysis

Top Keywords

gelsolin mediates
4
mediates calcium-dependent
4
calcium-dependent disassembly
4
disassembly listeria
4
listeria actin
4
actin tails
4
tails role
4
role intracellular
4
intracellular ca2+
4
ca2+ regulation
4

Similar Publications

Supervillin (SVIL), the biggest member of the villin/gelsolin superfamily, has recently been reported to promote the metastasis of hepatocellular carcinoma by stimulating epithelial-mesenchymal transition (EMT). However, little is known about the roles of SVIL in the migration of colorectal cancer cells. Here, we investigated the effects of SVIL on the migration of cisplatin-resistant colorectal cancer cells.

View Article and Find Full Text PDF

[Research progress of novel bone turnover markers in osteoporosis].

Zhonghua Yu Fang Yi Xue Za Zhi

December 2024

Department of Laboratory Medicine, West China Second University Hospital, Sichuan University Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu610041, China.

Bones possess metabolic activity, with their homeostasis maintained by bone resorption and bone formation mediated by osteoclasts and osteoblasts. By measuring bone metabolism markers, the overall state of bone metabolism and dynamic changes in systemic bone tissue can be reflected. Traditional bone turnover markers, including alkaline phosphatase, bonespecific alkaline phosphatase, procollagen type 1 N-terminal propeptide, procollagen type 1 C-terminal propeptide, osteocalcin, c-terminal telopeptides of type 1 collagen(CTX) and its subtype β-CTX, n-terminal telopeptides of type 1 collagen, have been widely used in clinical practice but still have limitations in terms of stability, diagnostic reliability, and specific reflection of bone sites.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of plasma gelsolin (pGSN), a protein that breaks down actin filaments, in inflammatory and neurodegenerative diseases, particularly in a mouse model of decompression sickness (DCS).
  • - Mice exposed to high pressure showed a significant decrease in pGSN levels and increased inflammatory microparticles (MPs), which led to neuroinflammation and cognitive/motor function impairments lasting over 12 days.
  • - Administering recombinant human plasma gelsolin (rhu-pGSN) effectively reduced inflammation, restored synaptic protein levels, and improved neurological function, suggesting that rhu-pGSN could be a potential treatment for DCS.
View Article and Find Full Text PDF

The heterogeneity of epithelial-to-mesenchymal transition (EMT) programs is manifest in the diverse EMT-like phenotypes occurring during tumor progression. However, little is known about the mechanistic basis and functional role of specific forms of EMT in cancer. Here we address this question in lung adenocarcinoma (LUAD) cells that enter a dormancy period in response to TGF-β upon disseminating to distant sites.

View Article and Find Full Text PDF

Compartmentalization and differential distribution of proteins within a cell maintain cellular function and viability. CapG is a gelsolin-related actin-binding protein that distributes in steady state diffusively throughout cytoplasm and cell nucleus. To detect changes in CapG's nucleocytoplasmic shuttling in response to external stimuli on the single cell level, we established repeated FRAP experiments of one and the same breast cancer cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!