A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A linear programming approach for identifying a consensus sequence on DNA sequences. | LitMetric

A linear programming approach for identifying a consensus sequence on DNA sequences.

Bioinformatics

Institute of Information Management, National Chiao Tung University, Taiwan, China.

Published: May 2005

Motivation: Maximum-likelihood methods for solving the consensus sequence identification (CSI) problem on DNA sequences may only find a local optimum rather than the global optimum. Additionally, such methods do not allow logical constraints to be imposed on their models. This study develops a linear programming technique to solve CSI problems by finding an optimum consensus sequence. This method is computationally more efficient and is guaranteed to reach the global optimum. The developed method can also be extended to treat more complicated CSI problems with ambiguous conserved patterns.

Results: A CSI problem is first formulated as a non-linear mixed 0-1 optimization program, which is then converted into a linear mixed 0-1 program. The proposed method provides the following advantages over maximum-likelihood methods: (1) It is guaranteed to find the global optimum. (2) It can embed various logical constraints into the corresponding model. (3) It is applicable to problems with many long sequences. (4) It can find the second and the third best solutions. An extension of the proposed linear mixed 0-1 program is also designed to solve CSI problems with an unknown spacer length between conserved regions. Two examples of searching for CRP-binding sites and for FNR-binding sites in the Escherichia coli genome are used to illustrate and test the proposed method.

Availability: A software package, Global Site Seer for the Microsoft Windows operating system is available by http://www.iim.nctu.edu.tw/~cjfu/gss.htm

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bti286DOI Listing

Publication Analysis

Top Keywords

consensus sequence
12
global optimum
12
csi problems
12
mixed 0-1
12
linear programming
8
dna sequences
8
maximum-likelihood methods
8
csi problem
8
sequences find
8
logical constraints
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!