The catalytic activity of selenocysteine-containing thioredoxin reductases can be mimicked by cysteine-variants if the local environment at the C-terminal redox center supports thiol activation. This concept of a linear catalytic site was challenged by structural data suggesting that the invariant residue His106 functions as a base catalyst for the dithiol-disulphide exchange reaction between enzyme and substrate. As reported here, we changed His106 to asparagine, glutamine, and phenylalanine in various C-terminal mutants of Drosophila melanogaster thioredoxin reductase. The catalytic activity dropped considerably, yet pH-profiles did not reveal differences, rendering a function for His106 as a base catalyst unlikely. Interestingly, the phenylalanine-mutants, designed as negative controls were the most active mutants which suggests rather a structural role of His106.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2005.01.001 | DOI Listing |
This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.
View Article and Find Full Text PDFChempluschem
January 2025
L V Pisarzhevskii Institute of Physical Chemistry NAS of Ukraine: Institut fiziceskoj himii imeni L V Pisarzevskogo Nacional'na akademia nauk Ukraini, Department of free radicals, UKRAINE.
This study unveils a novel property of polyaniline by establishing its catalytic activity in heterogeneous hydrogenation with molecular hydrogen. Polyaniline was activated by heat-treating at different temperatures in a hydrogen atmosphere. The sample treated at 300 °C exhibited the highest catalytic activity for ethylene hydrogenation in the gas phase at atmospheric pressure and for p-nitrotoluene or α-methylstyrene hydrogenation in the liquid phase.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
Appropriately designed catalysts help to minimise the energy required to convert the energy-poor feedstock HO into energy-rich molecular H. Herein, two families of pyridazine-based cryptates, mononuclear [MLi](BF) and mixed metal dinuclear [MCuLi](BF) (M = Fe, Co, Cu or Zn; Li is the Schiff base cryptand made by 2 : 3 condensation of tris(2-aminoethyl)amine and 3,6-diformylpyridazine), are investigated as potential electrocatalysts for the hydrogen evolution reaction (HER) in MeCN with acetic acid as the proton source. The synthesis and structures of a new mixed metal cryptate, [ZnCuLi](BF), and the tetrafluoroborate analogue of the previously reported perchlorate salt of the mono-zinc cryptate, [ZnLi](BF)·0.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
This study presents the synthesis of a Cd(II) based hydrophobic three dimensional crystalline network material (CNM), [Cd(L)(LH)(bpe)], {L = {4,4'-(hexafluroisopropylidine)bis(benzoate)} and 1,2-di(4-pyridyl) ethylene (bpe)}, 1(Cd), by employing the slow-diffusion method. The three-dimensional structure of 1(Cd) was determined by single crystal X-ray diffraction and characterized by powder X-ray diffraction (PXRD), FT-IR spectroscopy and thermogravimetric analysis (TGA). Subsequently, post-synthetic modification of 1(Cd) with Cu(II) at room temperature led to the formation of isostructural 1(Cu) with partial substitution.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NB) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!