A structural study of the myristoylated N-terminus of ARF1.

Biochim Biophys Acta

National Research Council, Neutron Program for Materials Research, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0.

Published: February 2005

The effect of myristoylation on the 15-amino-acid peptide from the membrane-binding N-terminus of ADP ribosylation factor 1 (ARF1) was studied using neutron diffraction and circular dichroism. A previous study on the non-acylated form indicated that the peptide lies parallel to the membrane, at a shallow depth and in the vicinity of the phosphorylcholine headgroups. It was suggested that the helix does not extend past residue 12, an important consequence for the linking region of the ARF1 protein. In this paper, we show that the result of myristoylation is to increase the helical content reaching the peptide's C-terminus, resulting in the formation of a new hydrophobic face. This increased helicity may augment the entire protein's membrane-binding affinity, indicating that ARF1 effectively has two interdependent membrane-binding motifs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2004.12.003DOI Listing

Publication Analysis

Top Keywords

structural study
4
study myristoylated
4
myristoylated n-terminus
4
arf1
4
n-terminus arf1
4
arf1 myristoylation
4
myristoylation 15-amino-acid
4
15-amino-acid peptide
4
peptide membrane-binding
4
membrane-binding n-terminus
4

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

Visualization of porcine and human aqueous humor outflow tract anatomies with transparency enhancement.

Jpn J Ophthalmol

January 2025

Institute for Photon Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Purpose: There is no established method for visualizing the three-dimensional (3D) structure of the aqueous humor outflow tract. This study attempted to visualize the 3D structures of porcine and human ocular tissues, particularly the aqueous humor outflow tract using a transparency reagent composed of 2, 2-thiodiethanol.

Study Design: Clinical and experimental.

View Article and Find Full Text PDF

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!