Lesch-Nyhan disease (LND), caused by complete deficiency of hypoxanthine guanine phosphoribosyltransferase (HPRT), is characterized by a neurological deficit, the etiology of which is unknown. Evidence has accumulated indicating that it might be related to dysfunction of the basal ganglia with a prominent loss of striatal dopamine fibers. Guanine nucleotide depletion has been shown to occur in cells from Lesch-Nyhan patients. In this study we demonstrate that chronic guanine nucleotide depletion induced by inhibition of inosine monophosphate dehydrogenase with low levels (50 nM) of mycophenolic acid (MPA) lead human neuroblastoma cell lines to differentiate toward the neuronal phenotype. The MPA-induced morphological changes were more evident in the dopaminergic line LAN5, than in the cholinergic line IMR32. MPA-induced differentiation, unlike that induced by retinoic acid, caused a less extensive neurite outgrowth and branching (similar to that observed in cultured HPRT-deficient dopaminergic neurons) and involved up-regulation of p53, p21 and bax, and bcl-2 down-regulation without p27 protein accumulation. These results suggest that guanine nucleotide depletion following HPRT deficiency, might lead to earlier and abnormal brain development mainly affecting the basal ganglia, displaying the highest HPRT activity, and could be responsible for the specific neurobehavioral features of LND.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2004.10.076DOI Listing

Publication Analysis

Top Keywords

guanine nucleotide
16
nucleotide depletion
16
basal ganglia
12
neurite outgrowth
8
lesch-nyhan disease
8
guanine
5
depletion
4
depletion induces
4
induces differentiation
4
differentiation aberrant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!