The crystal structure of a subtilisin-like serine proteinase from the psychrotrophic marine bacterium, Vibrio sp. PA-44, was solved by means of molecular replacement and refined at 1.84 A. This is the first structure of a cold-adapted subtilase to be determined and its elucidation facilitates examination of the molecular principles underlying temperature adaptation in enzymes. The cold-adapted Vibrio proteinase was compared with known three-dimensional structures of homologous enzymes of meso- and thermophilic origin, proteinase K and thermitase, to which it has high structural resemblance. The main structural features emerging as plausible determinants of temperature adaptation in the enzymes compared involve the character of their exposed and buried surfaces, which may be related to temperature-dependent variation in the physical properties of water. Thus, the hydrophobic effect is found to play a significant role in the structural stability of the meso- and thermophile enzymes, whereas the cold-adapted enzyme has more of its apolar surface exposed. In addition, the cold-adapted Vibrio proteinase is distinguished from the more stable enzymes by its strong anionic character arising from the high occurrence of uncompensated negatively charged residues at its surface. Interestingly, both the cold-adapted and thermophile proteinases differ from the mesophile enzyme in having more extensive hydrogen- and ion pair interactions in their structures; this supports suggestions of a dual role of electrostatic interactions in the adaptation of enzymes to both high and low temperatures. The Vibrio proteinase has three calcium ions associated with its structure, one of which is in a calcium-binding site not described in other subtilases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2005.04523.x | DOI Listing |
ACS Infect Dis
January 2025
Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
The ability to tolerate otherwise toxic compounds can open up unique niches in nature. Among drosophilid flies, few examples of such adaptations are known and those which are known are typically from highly host-specific species. Here we show that the human commensal species Drosophila busckii uses dimethyldisulfide (DMDS) as a key mediator in its host selection.
View Article and Find Full Text PDFMol Cell
January 2025
Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan. Electronic address:
Microplastic pollution significantly threatens marine ecosystems, including those with unique adaptations. This study evaluates the implications of polyethylene microplastics (PE-MPs) on the hydrothermal vent crab, Xenograpsus testudinatus. Crabs were exposed to varying fluorescent green polyethylene microspheres (FGPE) concentrations for 7 days.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!