Regulator of G protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) for Galpha subunits and negatively regulate G protein-coupled receptor signaling. Using RGS5 gene-specific RT-PCR, we have identified a novel alternative splicing variant of RGS5 mRNA in human ocular tissues. The alternative splicing of RGS5 mRNA occurred at position +44 (GenBank NM_003617), spliced out 174 bp (+44 to +218 bp) of the coding region, and encoded an RGS5s protein with a 108 amino acid N-terminal deletion. This study is the first to document alternative splicing of an RGS5 gene. We therefore studied RGS5 and RGS5s mRNA distribution in human tissues. In the eye, RGS5s was found to be highly expressed in the ciliary body and trabecular meshwork. It was also expressed in the kidney, brain, spleen, skeletal muscle and small intestine, but was not detectable in the liver, lung, heart. RGS5s was not found in monkey and rat ocular tissues, indicating species specificity for the eye. Comparing the recombinant RGS5 and RGS5s expression in HEK293/EBNA cells, RGS5s was present almost exclusively in the cytosolic fraction, whereas RGS5 was present in both membrane and cytosolic fractions. The data suggest that the N-terminal of RGS5 may be important for protein translocation to the cell membrane. Both RGS5 and RGS5s antagonized the rapid phosphorylation of p44/42 MAP kinase induced by Galphai coupled cannibinoid receptor-1 activation. RGS5, but not RGS5s, inhibited the Ca2+ signaling initiated by activation of Galphaq coupled angiotensin II receptors (AT1) and prostaglandin FP receptors. Cotransfection of RGS5s with RGS5 resulted in the blockade of RGS5 actions with respect to inhibition of the signal transduction initiated by activation of both AT1 and FP receptor, suggesting that RGS5s may contain functional domains that compete with RGS5 in the regulation of the Galphaq coupled AT1 and FP receptors. The unique expression pattern, cellular localization and functions of RGS5s suggest that RGS5s may play a critical role in the regulation of intracellular signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2004.04516.xDOI Listing

Publication Analysis

Top Keywords

alternative splicing
16
rgs5 rgs5s
16
rgs5
14
rgs5 mrna
12
ocular tissues
12
rgs5s
12
novel alternative
8
splicing variant
8
variant rgs5
8
mrna human
8

Similar Publications

Ferroptosis is linked to various tumor biological traits, and alternative splicing (AS), a crucial step in mRNA processing, plays a role in the post-transcriptional regulation of ferroptosis-related genes (FRGs). A least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis was utilized to build a prognostic signature based on 12 AS events (p < 0.05), which was validated in gastric cancer (GC) patients.

View Article and Find Full Text PDF

SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.

J Exp Clin Cancer Res

January 2025

Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.

Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.

View Article and Find Full Text PDF

U2AF1 mutation causes an oxidative stress and DNA repair defect in hematopoietic and leukemic cells.

Free Radic Biol Med

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin 301617, China. Electronic address:

U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Genome-wide analyses of glutathione S-transferase gene family and expression profiling among three haplotypes Aphis gossypii.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:

Glutathione S-transferase (GST) plays a critical role in detoxifying various chemical compounds and is essential for host adaptation and pesticide resistance in insects. To understand the genetic structure of the GST family and the expression patterns among three haplotypes of Aphis gossypii, we conducted studies using genome annotation files and RNA-seq data. We identified 11 GSTs in A.

View Article and Find Full Text PDF

Alternative splicing is a post-transcriptional process resulting in multiple protein isoforms from a single gene. Abnormal splicing may lead to metabolic diseases, including type 2 diabetes mellitus (T2DM). To identify the splicing factor expression that predicts T2DM remission in coronary heart disease (CHD) patients, we identified newly diagnosed T2DM at baseline ( = 190) from the CORDIOPREV study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!