[Ru(hat)2phen]2+ (HAT=1,4,5,8,9,12-hexaazatriphenylene, phen=1,10-phenanthroline) interacts with a good affinity with polynucleotides and DNA by intercalation, despite the presence of a second voluminous ancillary HAT ligand. It photoreacts with guanosine-5'-monophosphate (GMP). From HPLC, ESMS and NMR analyses, it can be concluded that this complex forms photoadducts with GMP. In contrast to the photoadducts isolated with Ru-TAP complexes (TAP=1,4,5,8-tetraazaphenanthrene), the photoadducts with [Ru(hat)2phen]2+ contain a covalent link between the oxygen atom of the guanine unit and a HAT ligand. Formation of oxidised photoadducts and compounds resulting from the addition of two GMP entities to the complex are also detected as side products. In the presence of oligo- and polynucleotides, [Ru(hat)2phen]2+ yields photoadducts when guanine bases are present.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200400591DOI Listing

Publication Analysis

Top Keywords

photoadducts [ruhat2phen]2+
8
hat ligand
8
photoadducts
6
photoreaction [ruhat2phen]2+
4
[ruhat2phen]2+ guanosine-5'-monophosphate
4
guanosine-5'-monophosphate dna
4
dna formation
4
formation types
4
types photoadducts
4
[ruhat2phen]2+ hat=1458912-hexaazatriphenylene
4

Similar Publications

Quantification of Synergistic Two-Color Covalent Bond Formation.

Angew Chem Int Ed Engl

October 2024

Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.

The emergence of highly wavelength resolved reactivity information for complex photochemical reaction processes allows the establishment of multi-color reaction modes. One particularly powerful mode is the synergistic two-color reaction, where two colors of light have to be present in the same volume element to either enable or enhance photochemical reactivity that leads to a specific photoproduct. Herein, we introduce a two-color synergistic photochemical reaction system based on a diaryl indenone epoxide (DIO) photoswitch and the cis-to-trans isomerization of a bridged ring-strained azobenzene (SA), which respond to ultraviolet (365 nm) and visible light (430 nm), respectively, with different rates, forming a well-defined heterocyclic photoadduct, DIOSA, that we structurally confirm via single crystal x-ray diffraction (SXRD).

View Article and Find Full Text PDF

Propofol binds and inhibits skeletal muscle ryanodine receptor 1.

Br J Anaesth

November 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Background: As the primary Ca release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, triggering agents including halogenated volatile anaesthetics bias RyR1 to an open state resulting in uncontrolled Ca release, increased sarcomere tension, and heat production. Propofol does not trigger MH and is commonly used for patients at risk of MH.

View Article and Find Full Text PDF

Polycarcin V induces DNA-damage response and enables the profiling of DNA-binding proteins.

Natl Sci Rev

November 2022

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China.

To maintain genomic integrity and avoid diseases, the DNA-damage response (DDR) not only detects and repairs DNA lesions, but also contributes to the resistance to DNA-damaging chemotherapeutics. Targeting the DDR plays a significant role in drug discovery using the principle of synthetic lethality. The incomplete current knowledge of the DDR encouraged us to develop new strategies to identify and study its components and pathways.

View Article and Find Full Text PDF

Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide.

Photochem Photobiol

March 2023

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina.

The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation].

View Article and Find Full Text PDF

The development of serial crystallography over the last decade at XFELs and synchrotrons has produced a renaissance in room-temperature macromolecular crystallography (RT-MX), and fostered many technical and methodological breakthroughs designed to study phenomena occurring in proteins on the picosecond-to-second timescale. However, there are components of protein dynamics that occur in much slower regimes, of which the study could readily benefit from state-of-the-art RT-MX. Here, the room-temperature structural study of the relaxation of a reaction intermediate at a synchrotron, exploiting a handful of single crystals, is described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!