N-Acetylation is a modification of glyphosate that could potentially be used in transgenic crops, given a suitable acetyltransferase. Weak enzymatic activity (k(cat) = 5 min(-1), K(M) = 1 mM) for N-acetylation of glyphosate was discovered in several strains of Bacillus licheniformis (Weigmann) Chester by screening a microbial collection with a mass spectrometric assay. The parental enzyme conferred no tolerance to glyphosate in any host when expressed as a transgene. Eleven iterations of DNA shuffling resulted in a 7000-fold improvement in catalytic efficiency (k(cat)/K(M)), sufficient for conferring robust tolerance to field rates of glyphosate in transgenic tobacco and maize. In terms of k(cat)/K(M), the native enzyme exhibited weak activity (4-450% of that with glyphosate) with seven of the common amino acids. Evolution of the enzyme towards an improved k(cat)/K(M) for glyphosate resulted in increased activity toward aspartate (40-fold improved k(cat)), but activity with serine and phosphoserine almost completely vanished. No activity was observed among a broad sampling of nucleotides and antibiotics. Improved catalysis with glyphosate coincided with increased thermal stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.1014DOI Listing

Publication Analysis

Top Keywords

glyphosate
8
modification glyphosate
8
glyphosate transgenic
8
activity
5
evolution microbial
4
microbial acetyltransferase
4
acetyltransferase modification
4
glyphosate novel
4
novel tolerance
4
tolerance strategy
4

Similar Publications

Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea.

View Article and Find Full Text PDF

Urinary biomonitoring of exposure to glyphosate and its metabolite amino-methyl phosphonic acid among farmers and non-farmers in Morocco.

Environ Toxicol Pharmacol

December 2024

Laboratory of Pharmacology and Toxicology, University Hospital Hassan II, Fez, Morocco; Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco. Electronic address:

Glyphosate, a widely used herbicide in global agriculture, poses potential health risks due to environmental and dietary exposure. This study evaluated urinary concentrations of glyphosate and its metabolite, amino-methyl phosphonic acid (AMPA), among farmers and non-farmers in Morocco's Fez-Meknes region, using liquid chromatography-tandem mass spectrometry. Glyphosate was detected in 57.

View Article and Find Full Text PDF

Multiyear and seasonal wide-scale indicators for French surface waters contamination by WFD substances.

Environ Sci Pollut Res Int

December 2024

Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France.

This study offers an unprecedented valuation of the French surface waters WFD chemical monitoring dataset, covering 101 substances (metals, industrial and persistent organic pollutants (POPs), plant protection product (PPP) and biocides active substances, combustion residues) measured monthly on 4000 sites of the 6 main continental river basins, during 12 years (2009-2020). The concentration data were first made comparable through an original process removing the bias induced by the space-and-time heterogeneity of the monitoring labs performance, to gather a reference workable set of monthly contamination indicators. These were then used to display the substances' seasonal and interannual timeseries, revealing, e.

View Article and Find Full Text PDF

The use of pesticides has significantly increased and proliferated following the technological advancements established by the green revolution, aimed at boosting agricultural productivity. The extensive use of man-made chemicals as fertilizer and pesticides has consequently led to large-scale application, which has led to a number of environmental and human health problems. This study has helped to develop a laser-induced graphene (LIG) sensor for the detection of the most widely used herbicide in the world, glyphosate.

View Article and Find Full Text PDF

Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.

Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!