Noncovalent DNA interactions, e.g., DNA intercalation and DNA groove-binding, have not been well studied relative to covalent interactions largely due to the inability of predicting and detecting such events in intact cells. We have adapted an in vitro bleomycin amplification method for DNA intercalation for use in cultured V79 Chinese hamster cells and have validated this approach through the use of a three-dimensional DNA computational docking model that quantifies potential strength of DNA intercalative binding based on electrostatics and hydrogen bonding. For many structural classes of molecules, DNA intercalation is necessary but not sufficient for genotoxicity. The present article reviews our progress to date in predicting and confirming noncovalent binding of drugs and other chemicals and in understanding the mechanistic relationship between intercalation and genotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.20096 | DOI Listing |
Biophys J
January 2025
Department of Physics, Northeastern University, Boston, MA, 02115, USA. Electronic address:
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain.
Apurinic/apyrimidinic (AP) endonucleases are key enzymes responsible for the repair of base-less nucleotides generated by spontaneous hydrolysis or as DNA repair intermediates. APE1, the major human AP endonuclease, is a druggable target in cancer and its biological function has been extensively studied. However, the molecular features responsible for its substrate specificity are poorly understood.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland.
Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!