Background: Alpha-galactosidase A (Gla) deficiency leads to widespread tissue accumulation of neutral glycosphingolipids and is associated with premature vascular complications such as myocardial infarction and stroke. Glycosphingolipids have been shown to accumulate in human atherosclerotic lesions, although their role in atherogenesis is unclear.

Methods And Results: To determine whether Gla affects the progression of atherosclerosis, mice were generated with combined deficiencies of apolipoprotein E and Gla. At 45 weeks of age, Gla-deficient mice had developed more atherosclerosis than mice with normal Gla expression (25.1+/-14.0 versus 12.3+/-9.3 mm2 of total lesion area, P<0.02). This increase in atherosclerosis was associated with the presence of increased Gb3, enhanced inducible nitric oxide synthase expression, and increased nitrotyrosine staining.

Conclusions: These findings suggest that deficiency of Gla leads to increased inducible nitric oxide synthase expression and accelerated atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.CIR.0000154550.15963.80DOI Listing

Publication Analysis

Top Keywords

atherosclerosis mice
12
alpha-galactosidase deficiency
4
deficiency accelerates
4
accelerates atherosclerosis
4
mice
4
mice apolipoprotein
4
apolipoprotein deficiency
4
deficiency background
4
background alpha-galactosidase
4
gla
4

Similar Publications

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

PIM1 instigates endothelial-to-mesenchymal transition to aggravate atherosclerosis.

Theranostics

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.

Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. Endothelial cell dysfunction is the initiating factor of atherosclerosis (AS). Increasing evidence suggests that EndMT contributes to the occurrence and progression of atherosclerotic lesions and plaque instability.

View Article and Find Full Text PDF

Intimal hyperplasia (IH) remains a significant clinical problem, causing vascular intervention failure. This study aimed to elucidate whether gangliosides GA2 accumulated in atherosclerotic mouse aortae and plasma promote the development of IH. We identified that GA2 was remarkably accumulated in both artery and plasma of atherosclerotic patients and mice.

View Article and Find Full Text PDF

Astragali Radix-Angelicae Sinensis Radix inhibits the activation of vascular adventitial fibroblasts and vascular intimal proliferation by regulating the TGF-β1/Smad2/3 pathway.

J Ethnopharmacol

December 2024

School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, Changsha City, Hunan Province, China410208; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, Changsha 410208, China. Electronic address:

Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.

Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.

View Article and Find Full Text PDF

E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis.

Int J Med Microbiol

December 2024

Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Background: The probiotic E. coli Nissle 1917 (EcN) alleviates the progression of various diseases, including colitis and tumors. However, EcN has not been studied in atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!