Lipopolysaccharides (LPS) of the outer membrane of Gram-negative bacteria represent a primary target for innate immune responses. We demonstrate here that the antimicrobial/anti-neutrophil elastase full-length elafin (FL-EL) is able to bind both smooth and rough forms of LPS. The N-terminus was shown to bind both forms of LPS more avidly. We demonstrate that the lipid A core-binding proteins polymyxin B (PB) and LPS-binding protein (LBP) compete with elafin for binding, and that LBP is able to displace prebound elafin from LPS. When PB, FL-EL, N-EL, and C-EL were pre-incubated with LPS before addition to immobilized LBP, PB was the most potent inhibitor of LPS transfer to LBP. These data prompted us to examine the biological consequences of elafin binding to LPS, using tumor necrosis factor (TNF)-alpha release by murine macrophages. In serum-containing conditions, N-EL had no effect, whereas both C-EL and FL-EL inhibited TNF-alpha production. In serum-free conditions, however, all moieties had a stimulatory activity on TNF-alpha release, with C-EL being the most potent at the highest concentration. The differential biological activity of elafin in different conditions suggests a role for this molecule in either LPS detoxification or activation of innate immune responses, depending on the external cellular environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2004-0250OC | DOI Listing |
Intensive Care Med Exp
January 2025
Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India.
This study was designed to evaluate the dose-dependent efficacy of neurotensin receptor-1 (NTSR1) agonist PD149163 in the amelioration of the lipopolysaccharide (LPS)-induced apoptosis in the gastrointestinal tract (GIT) of mice. PD149163 is an analogue of NTS, a GIT tri-decapeptide with anti-inflammatory and anti-oxidative effects. Swiss-albino mice (female/8 weeks/25 ± 2.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
In recent years, growing evidence suggests that lipopolysaccharide (LPS), a bacterial endotoxin found in the outer membrane of gram‑negative bacteria, can influence cognitive functions, particularly memory formation and retrieval. However, the underlying mechanisms through which LPS exerts its effects on memory remain incompletely understood. This review used various electronic databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published between 2000 and 2024.
View Article and Find Full Text PDFNanoscale
January 2025
Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
Targeted delivery offers solutions for more efficient therapies with fewer side effects. Here, lipopeptides (LPs) prepared by conjugation of the nuclear-targeting peptide analogue H-YKQSHKKGGKKGSG-NH (NrTP6) and two lauric acid chains are used to encapsulate the chemotherapeutic agent doxorubicin (DX) through a solvent-exchange protocol. LPs spontaneously form nanosized rod-like assemblies in phosphate buffer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!