Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection.

J Exp Bot

Department of Plant Physiology and Biochemistry, University of Łódź, 90-237 Łódź, Banacha 12/16, Poland.

Published: March 2005

Changes in AA-GSH cycle activity following Botrytis cinerea infection were studied in tomato whole-leaf extracts as well as in chloroplasts, mitochondria, and peroxisomes. The oxidative effect of infection affected all cellular compartments although mitochondria and peroxisomes underwent the most pronounced changes. Apart from organelle-specific variations, a general shift of the cellular redox balance towards the oxidative state was found. It was manifested by the significant decline in concentrations and redox ratios of the ascorbate and glutathione pools as well as by the insufficient activity of MDHAR, DHAR, and GR needed for antioxidant regeneration. There was no compatibility between the ascorbate- and glutathione-mediated changes in different compartments. It was concluded that B. cinerea was able to break down the protective antioxidant barrier of the AA-GSH cycle at both the cellular and organellar levels. The changes in the AA-GSH cycle activity could partly be related to the B. cinerea-induced promotion of senescence that favoured disease progress.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eri086DOI Listing

Publication Analysis

Top Keywords

aa-gsh cycle
12
botrytis cinerea
8
cinerea infection
8
changes aa-gsh
8
cycle activity
8
mitochondria peroxisomes
8
compartment-specific role
4
role ascorbate-glutathione
4
cycle
4
ascorbate-glutathione cycle
4

Similar Publications

The color changes brought on by the enzymatic interactions of phenolic compounds with released endogenous polyphenol oxidase and the penetration of oxygen into the tissue has a significant impact on the commercialization of fresh-cut fruit, such as apples. This process causes a loss of quality in fresh-cut apples, resulting in browning of the fruit surface. By acting as a semipermeable barrier to gases and water vapor and thus lowering respiration, enzymatic browning, and water loss, edible coatings can provide a chance to increase the shelf life of fresh-cut produce.

View Article and Find Full Text PDF

Nicosulfuron is a postemergence herbicide used for weed control in maize fields (Zea mays L.). We used the pair of nearly isogenic inbred lines, SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive), to study the effect of nicosulfuron on growth, oxidative stress, and the ascorbate-glutathione (AA-GSH) cycle in waxy maize seedlings.

View Article and Find Full Text PDF

Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants.

Planta

September 2005

Department of Plant Physiology and Biochemistry, University of Łódź, 90-237 Łódź, Banacha 12/16, Poland.

Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers.

View Article and Find Full Text PDF

Changes in AA-GSH cycle activity following Botrytis cinerea infection were studied in tomato whole-leaf extracts as well as in chloroplasts, mitochondria, and peroxisomes. The oxidative effect of infection affected all cellular compartments although mitochondria and peroxisomes underwent the most pronounced changes. Apart from organelle-specific variations, a general shift of the cellular redox balance towards the oxidative state was found.

View Article and Find Full Text PDF

The aim of the present study was to examine the effects of the hepatotoxic drug acetaminophen (AA) on the synthesis rates of glutathione (GSH), activated sulphate (PAPS; adenosine 3'-phosphate 5'-phosphosulphate) and the AA metabolites AA-GSH and AA-sulphate after selective inhibition of GSH biosynthesis or sulphation in isolated rat hepatocytes. Selective inhibition of the two interdependent metabolic pathways was accomplished by buthionine sulphoximine (BSO) and 2,6-dichloro-4-nitrophenol (DCNP). The synthesis rates of GSH and PAPS were determined simultaneously by a previously described method based on trapping of radioactivity (35S) in the pre-labelled GSH and PAPS pools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!