Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell. A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2004.11.011 | DOI Listing |
Anticancer Drugs
January 2025
Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.
Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.
View Article and Find Full Text PDFHum Cell
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.
Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.
View Article and Find Full Text PDFTurk J Pediatr
December 2024
Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye.
Background: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants caused by an imbalance between lung injury and lung repair in the developing immature lungs of the newborn. Pulmonary inflammation is an important feature in the pathogenesis of BPD. The aim of this study was to evaluate the relationship between the inflammatory microenvironment and the levels of visfatin and nesfatin-1, which are among the new adipocytokines, in BPD patients.
View Article and Find Full Text PDFJ Med Chem
January 2025
Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France.
UBE2N protein belongs to the UE2s family and plays a crucial role in DNA repair, making it an exciting target for the development of innovative anticancer therapies. With the aim of discovering UBE2N inhibitors (UBE2Ni), this perspective seeks to review and provide elements to guide the design of new compounds. We propose a chemoinformatic structural analysis of the protein and its areas of interaction with its different partners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!