We investigated the expression of genes in response to exposure of primary human chondrocytes to extracellular catalase. The addition of catalase to culture medium caused a significant up-regulation of cyclooxygenase 2, interleukin 8, and stromelysin mRNA levels. Similar pattern of gene activation occurred in chondrocytes incubated with horseradish peroxidase. On the contrary, ebselen, a glutathione peroxidase mimetic agent, did not affect expression of catalase-inducible genes. Taken together, these observations imply that catalase action is mediated by its side peroxidase-like activity, rather than elimination of H2O2. Genistein suppressed catalase-mediated effects on gene expression. This finding implies that tyrosine kinases are implicated in underlying signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2004.07.014DOI Listing

Publication Analysis

Top Keywords

extracellular catalase
8
cyclooxygenase interleukin
8
interleukin stromelysin
8
primary human
8
human chondrocytes
8
catalase induces
4
induces cyclooxygenase
4
stromelysin genes
4
genes primary
4
chondrocytes investigated
4

Similar Publications

Urolithin A (URA), a product of the gut microflora from foods rich in ellagitannins found in berries and nuts, has demonstrated anti-inflammatory and antioxidative stress properties in various disease models. Ferroptosis, an iron-dependent form of cell death, is considered a pathogenic cause of tendinopathy. However, the effects of URA on hyperlipidemic tenocytes and the related molecular mechanisms for the treatment of tendinopathy have not been elucidated.

View Article and Find Full Text PDF

Biomolecular Microneedle Initiates FeO/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.

Adv Sci (Weinh)

January 2025

Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.

View Article and Find Full Text PDF

Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.

View Article and Find Full Text PDF

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

Effect of catalase on CPC production during fermentation of Acremonium chrysogenum.

Bioresour Bioprocess

January 2025

Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!