Transcription of the hupSL genes, which encode the uptake [NiFe]hydrogenase of Rhodobacter capsulatus, is specifically activated by H(2). Three proteins are involved, namely the H(2)-sensor HupUV, the histidine kinase HupT and the transcriptional activator HupR. hupT and hupUV mutants have the same phenotype, i.e. an increased level of hupSL expression (assayed by phupS::lacZ fusion) in the absence of H(2); they negatively control hupSL gene expression. HupT can autophosphorylate its conserved His(217), and in vitro phosphotransfer to Asp(54) of its cognate response regulator, HupR, was demonstrated. The non-phosphorylated form of HupR binds to an enhancer site (5'-TTG-N(5)-CAA) of phupS localized at -162/-152 nt and requires integration host factor to activate fully hupSL transcription. HupUV is an O(2)-insensitive [NiFe]hydrogenase, which interacts with HupT to regulate the phosphorylation state of HupT in response to H(2) availability. The N-terminal domain of HupT, encompassing the PAS domain, is required for interaction with HupUV. This interaction with HupT, leading to the formation of a (HupT)(2)-(HupUV)(2) complex, is weakened in the presence of H(2), but incubation of HupUV with H(2) has no effect on the stability of the heterodimer/tetramer, HupUV-(HupUV)(2), equilibrium. HupSL biosynthesis is also under the control of the global two-component regulatory system RegB/RegA, which controls gene expression in response to redox. RegA binds to a site close to the -35 promoter recognition site and to a site overlapping the integration host factor DNA-binding site (5'-TCACACACCATTG, centred at -87 nt) and acts as a repressor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST0330028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!