Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.

Langmuir

Programa de Ingeniería Molecular, Instituto Mexicano del Petróleo, 07700 México, D.F., México.

Published: February 2005

AI Article Synopsis

  • Composite latex particles are versatile materials used in products like paints and adhesives, combining rubber and thermoplastic properties for high performance.
  • The morphology of these composite particles varies based on factors such as the types of monomers, synthesis temperature, and surfactants used in the emulsion polymerization process.
  • This research introduces a new three-component model using Monte Carlo simulations to analyze how particle morphology is influenced by the properties (like hydrophilicity and flexibility) of the polymer chains, successfully mirroring features seen in experimental results.

Article Abstract

Composite latex particles have shown a great range of applications such as paint resins, varnishes, water borne adhesives, impact modifiers, etc. The high-performance properties of this kind of materials may be explained in terms of a synergistical combination of two different polymers (usually a rubber and a thermoplastic). A great variety of composite latex particles with very different morphologies may be obtained by two-step emulsion polymerization processes. The formation of specific particle morphology depends on the chemical and physical nature of the monomers used during the synthesis, the process temperature, the reaction initiator, the surfactants, etc. Only a few models have been proposed to explain the appearance of the composite particle morphologies. These models have been based on the change of the interfacial energies during the synthesis. In this work, we present a new three-component model: Polymer blend (flexible and rigid chain particles) is dispersed in water by forming spherical cavities. Monte Carlo simulations of the model in two dimensions are used to determine the density distribution of chains and water molecules inside the suspended particle. This approach allows us to study the dependence of the morphology of the composite latex particles on the relative hydrophilicity and flexibility of the chain molecules as well as on their density and composition. It has been shown that our simple model is capable of reproducing the main features of the various morphologies observed in synthesis experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la048065tDOI Listing

Publication Analysis

Top Keywords

composite latex
16
latex particles
12
particle morphology
8
monte carlo
8
modeling composite
4
latex
4
particle
4
latex particle
4
morphology off-lattice
4
off-lattice monte
4

Similar Publications

The coagulation of fresh latex is one of the critical processes that impacts rubber quality during natural rubber processing. Constitutive relationships are the basis for the study of the mechanical properties of rubber materials and serve as a prerequisite for material simulation studies. However, studies on the effect of different coagulation methods on natural rubber constitutive relationships have yet to be carried out, and the current models used for natural rubber constitutive relationships need to be improved.

View Article and Find Full Text PDF

Chilean Papaya (): A Native Fruit with a High Health-Promoting Functional Potential.

Antioxidants (Basel)

December 2024

Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmaceutical, Universidad de Chile, St. Dr. Carlos Lorca 964, Independencia, Santiago 8380494, Chile.

Papaya fruit is commonly known for its nutritional and medicinal value. It is a perennial, herbaceous, and trioecious cross-pollinated species with male, female, and hermaphrodite plants. The Chilean papaya, originating from South America, has been extensively spread throughout the Andean nations, cultivated primarily in the Coquimbo and Valparaíso valleys in Chile, between 34°41' and 36°33' latitude south.

View Article and Find Full Text PDF

Roses () are among the most cherished ornamental plants globally, yet they are highly susceptible to infections by , the causative agent of gray mold disease. Here we inoculated the resistant rose variety 'Yellow Leisure Liness' with to investigate its resistance mechanisms against gray mold disease. Through transcriptome sequencing, we identified 578 differentially expressed genes (DEGs) that were significantly upregulated at 24, 48, and 72 hours post-inoculation, with these genes significantly enriched for three defense response-related GO terms.

View Article and Find Full Text PDF

Multifunctional ZnO-Loaded Colloidosomes with Multiple Synergies as a UV Filter.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.

ZnO nanoparticles with high safety and stability are often used as active ingredients in sunscreens to protect the skin from ultraviolet rays. However, ZnO nanoparticles are easy to agglomerate, which will significantly affect the ultraviolet absorption and bacteriostatic properties, and the reactive oxygen species induced by the photocatalytic activity may result in irreversible secondary damage to the skin. Herein, the ZnO nanoparticles are dispersed uniformly on the surface of latex particles, and these composite particles are used as shell materials to construct self-assembled colloidosomes by high-gravity technology, which can improve the application properties with synergistic enrichment of the hollow structure.

View Article and Find Full Text PDF

Hura crepitans (Euphorbiaceae), is widespread in the Amazon rainforest and on plantations in sub-Saharan Africa. This tree produces an irritating milky latex rich in secondary metabolites, notably daphnane-type diterpenes and cerebrosides. Previous studies have shown that huratoxin, the main daphnane in the latex, significantly and selectively inhibited the growth of colorectal cancer cells through a unique mechanism involving the activation of PKCζ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!