The crystal structure of an open form of the Escherichia coli MscS mechanosensitive channel was recently solved. However, the conformation of the closed state and the gating transition remain uncharacterized. The pore-lining transmembrane helix contains a conserved glycine- and alanine-rich motif that forms a helix-helix interface. We show that introducing 'knobs' on the smooth glycine face by replacing glycine with alanine, and substituting conserved alanines with larger residues, increases the pressure required for gating. Creation of a glycine-glycine interface lowers activation pressure. The importance of residues Gly104, Ala106 and Gly108, which flank the hydrophobic seal, is demonstrated. A new structural model is proposed for the closed-to-open transition that involves rotation and tilt of the pore-lining helices. Introduction of glycine at Ala106 validated this model by acting as a powerful suppressor of defects seen with mutations at Gly104 and Gly108.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb895DOI Listing

Publication Analysis

Top Keywords

mscs mechanosensitive
8
mechanosensitive channel
8
pivotal role
4
role glycine-rich
4
glycine-rich tm3
4
tm3 helix
4
helix gating
4
gating mscs
4
channel crystal
4
crystal structure
4

Similar Publications

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Parasitic plants pose a substantial threat to agriculture as they attack economically important crops. The stem parasitic plant Cuscuta campestris invades the host's stem with a specialized organ referred to as the haustorium, which absorbs nutrients and water from the host. Initiation of the parasitic process in C.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of mechanosensitive channels (MSCs) in the retina, particularly how they relate to conditions like glaucoma and retinal injuries caused by increased pressure.
  • Using advanced techniques, the researchers analyzed the expression of various MSCs in different retinal cells, including Müller cells and retinal ganglion cells (RGCs).
  • They found a critical balance between hyperpolarizing and depolarizing MSCs in retinal neurons, suggesting that this balance may affect how vulnerable these neurons are to pressure-induced damage, highlighting potential new avenues for treatment.
View Article and Find Full Text PDF

Robust coordination of surface and volume changes is critical for cell integrity. Few studies have elucidated the plasma membrane (PM) remodeling events during cell surface and volume alteration, especially regarding PM sensing and its subsequent rearrangements. Here, using fission yeast protoplasts, we reveal a Ca-dependent mechanism for membrane addition that ensures PM integrity and allows its expansion during acute hypoosmotic cell swelling.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!