Comparative study on the effects of cyclosporin a in renal cells in culture.

Nephron Exp Nephrol

Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brazil.

Published: April 2006

AI Article Synopsis

  • Cyclosporin A (CSA) inhibits P-glycoprotein (ABCB1), but its link to CSA-induced kidney toxicity is not well understood.
  • Three renal cell lines (LLC-PK1, MDCK, and Ma104) showed reduced viability with CSA treatment, with varying levels of resistance based on ABCB1 expression.
  • CSA led to increased accumulation of the compound rhodamine 123 in all cell lines, suggesting that the nephrotoxicity of CSA may arise from both direct cellular injury and modulation of ABCB1 activity, resulting in toxic buildup of substrates.

Article Abstract

Background: Although cyclosporin A (CSA) inhibits P-glycoprotein (ABCB1), the relationship between this inhibition and CSA-induced nephrotoxicity is not established.

Methods: Three renal cell lines were used to investigate the effects of CSA in cellular viability and accumulation of rhodamine 123 (Rho123): LLC-PK1, which does not express ABCB1 substantially; MDCK, expressing moderate amounts of this protein, and Ma104 cells, which express high amounts of ABCB1.

Results: The viability was significantly reduced in the three cell lines after treatment with CSA concentrations >10 microM. Ma104 was the more resistant and LLC-PK1 the more sensitive. CSA increased Rho123 accumulation in the three cell lines when incubated simultaneously, MDCK presenting the higher increase. However, different results were achieved when the periods of incubation with Rho123 and CSA were disconnected: a post-incubation with CSA was more effective in Ma104 cells, while MDCK and LLC-PK1 showed no difference between pre-, co- and post-incubation with CSA.

Conclusions: Our results suggest that the effects of CSA may be divided into two groups: ABCB1-independent (direct injury), and ABCB1-dependent toxicity, due to modulation of its activity. This could result in increased accumulation of noxious ABCB1 substrates, contributing to CSA-induced nephrotoxicity. Furthermore, the mechanisms of ABCB1 modulation by CSA may be different for different cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000083415DOI Listing

Publication Analysis

Top Keywords

cell lines
16
csa
8
csa-induced nephrotoxicity
8
effects csa
8
ma104 cells
8
three cell
8
comparative study
4
study effects
4
effects cyclosporin
4
cyclosporin renal
4

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.

View Article and Find Full Text PDF

Objective: Our study aimed to investigate the therapeutic effects of the Kuntai capsule in improving ovarian function in rats with transplantation of cryopreserved ovary.

Methods: Two mice ovary cell lines were cultured with Kuntai capsule decoction, and cell apoptosis was detected by MTT assay. A total of 90 SPF Sprague Dawley rats were included in this study.

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!