In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (k(cat); 3.8 versus 5.7 s(-1) at 25 degrees C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)(-1) in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster k(cat).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065364 | PMC |
http://dx.doi.org/10.1104/pp.104.054759 | DOI Listing |
J Plant Res
December 2024
Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
Plant Physiol Biochem
August 2024
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
As an important warm-season turfgrass species, bermudagrass (Cynodon dactylon L.) flourishes in warm areas around the world due to the existence of the C4 photosynthetic pathway. However, how C4 photosynthesis operates in bermudagrass leaves is still poorly understood.
View Article and Find Full Text PDFPlant Cell Environ
September 2024
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
C NAD-malic enzyme (NAD-ME) species occurs in drier regions and exhibit different drought responses compared to C NADP-malic enzyme (NADP-ME) species. However, a physiological mechanism explaining the geographical discrepancies remains uncertain. This study examined gas exchange patterns that might explain different distributions observed between two subtypes of C photosynthesis.
View Article and Find Full Text PDFBiosystems
April 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia.
New Phytol
April 2024
Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands.
Theoretically, the PEP-CK C subtype has a higher quantum yield of CO assimilation ( ) than NADP-ME or NAD-ME subtypes because ATP required for operating the CO-concentrating mechanism is believed to mostly come from the mitochondrial electron transport chain (mETC). However, reported is not higher in PEP-CK than in the other subtypes. We hypothesise, more photorespiration, associated with higher leakiness and O evolution in bundle-sheath (BS) cells, cancels out energetic advantages in PEP-CK species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!