The intracellular parasite Toxoplasma gondii, the causative agent of toxoplasmosis, induces a protective CD8 T-cell response in its host; however, the mechanisms by which T. gondii proteins are presented by the class I major histocompatibility complex remain largely unexplored. T. gondii resides within a specialized compartment, the parasitophorous vacuole, that sequesters the parasite and its secreted proteins from the host cell cytoplasm, suggesting that an alternative cross-priming pathway might be necessary for class I presentation of T. gondii antigens. Here we used a strain of T. gondii expressing yellow fluorescent protein and a secreted version of the model antigen ovalbumin to investigate this question. We found that presentation of ovalbumin secreted by the parasite requires the peptide transporter TAP (transporter associated with antigen processing) and occurs primarily in actively infected cells rather than bystander cells. We also found that dendritic cells are a major target of T. gondii infection in vivo and account for much of the antigen-presenting activity in the spleen. Finally, we obtained evidence that Cre protein secreted by T. gondii can mediate recombination in the nucleus of the host cell. Together, these results indicate that Toxoplasma proteins can escape from the parasitophorous vacuole into the host cytoplasm and be presented by the endogenous class I pathway, leading to direct recognition of infected cells by CD8 T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC547086PMC
http://dx.doi.org/10.1128/IAI.73.2.703-711.2005DOI Listing

Publication Analysis

Top Keywords

parasitophorous vacuole
12
class major
8
major histocompatibility
8
histocompatibility complex
8
escape parasitophorous
8
gondii
8
toxoplasma gondii
8
host cell
8
protein secreted
8
infected cells
8

Similar Publications

An intracellular protozoan, the Apicomplexan parasite () infects nucleated cells, in which it triggers the formation of a specialized membrane-confined cytoplasmic vacuole, named the parasitophorous vacuole (PV). One of the most prominent events in the parasite's intracellular life is the congregation of the host cell mitochondria around the PV. However, the significance of this event has remained largely unsolved since the parasite itself possesses a functional mitochondrion, which is essential for its replication.

View Article and Find Full Text PDF

A light and electron microscopic study of skin biopsies taken from 9 patients with ulcerative leishmaniasis of both sexes aged from 14 to 26 years in the territory of the Republic of Azerbaijan was carried out. Based on clinical, morphological and electron microscopic parameters, all patients were diagnosed with ulcerative cutaneous anthroponotic leishmaniasis (Leishmania (L.) tropica).

View Article and Find Full Text PDF
Article Synopsis
  • The obligate intracellular parasite replicates within a compartment called the parasitophorous vacuole (PV) and utilizes a protein ingestion pathway to take in nutrients from the host cell's cytosol, initiated by the protein GRA14.
  • A genome-wide CRISPR screen revealed that mutants lacking components of this ingestion pathway (GRA14, CPL, or CRT) are forced to rely more on alternative metabolic pathways to survive, such as pyrimidine and fatty acid biosynthesis.
  • Analysis showed that these ingestion-deficient mutants had lower levels of key nutrients and growth defects when amino acids were scarce, indicating that the ingestion pathway plays a crucial role in nutrient acquisition during resource-limited conditions.
View Article and Find Full Text PDF

Human liver organoids are susceptible to Plasmodium vivax infection.

Malar J

December 2024

Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.

Background: The eradication of Plasmodium vivax malaria is complicated due to the presence of hypnozoites, the hidden dormant form of the parasite that is present in the liver. Currently available drug regimens are effective at killing hypnozoites but cause side effects and are difficult to administer. Studies testing drugs for liver-stage malaria remain rare and mainly rely on the use of cancerous or immortalized hepatic cells and primary hepatocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium, the parasite that causes malaria, first infects liver cells (hepatocytes) before causing symptoms during the blood stage of infection, residing in a specialized compartment called the parasitophorous vacuole (PV).
  • The study focuses on how the host's autophagy processes and a specific transcription factor, TFEB, play crucial roles in the development of Plasmodium's liver stages.
  • Researchers discovered that certain ATG8 family proteins, particularly GABARAP, help recruit a complex (FLCN-FNIP) that inhibits TFEB, and that blocking this complex activates TFEB, revealing new details about the interaction between the parasite and host cell signaling during the liver infection phase
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!