Structure-based design, chemical synthesis and biochemical testing of a series of novel Smac peptido-mimetics as inhibitors of XIAP protein are described. The most potent compound, 6j, has a binding affinity (K(i) value) of 24 nM to XIAP BIR3 protein and is 24 times more potent than the native Smac AVPI peptide. Further optimization of these potent Smac mimetics may ultimately lead to the development of a novel class of anticancer drugs for the treatment of human cancer by overcoming apoptosis-resistance of cancer cells through targeting the inhibitor of apoptosis proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2004.11.008 | DOI Listing |
Innovation (Camb)
January 2025
AIM Center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Predicting free energy changes (ΔΔG) is essential for enhancing our understanding of protein evolution and plays a pivotal role in protein engineering and pharmaceutical development. While traditional methods offer valuable insights, they are often constrained by computational speed and reliance on biased training datasets. These constraints become particularly evident when aiming for accurate ΔΔG predictions across a diverse array of protein sequences.
View Article and Find Full Text PDFJ Med Chem
January 2025
Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China.
Despite recent advances in the inhibition of EGFR (epidermal growth factor receptor), there remains a clinical need for new EGFR Exon20 insertion (Ex20Ins) inhibitors that spare EGFR WT. Herein, we report the discovery and optimization of two chemical series leading to ether and biaryl as potent, selective, and brain-penetrant inhibitors of Ex20Ins mutants. Building on our earlier discovery of alkyne which allowed access to CNS property space for an Ex20Ins inhibitor, we utilized structure-based design to move to lower lipophilicity and lower CL compounds while maintaining a WT selectivity margin.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.
View Article and Find Full Text PDFACS Cent Sci
January 2025
The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Harwell OX11 0FA, U.K.
Protein N-glycosylation is a cotranslational modification that takes place in the endoplasmic reticulum (ER). Disruption of this process can result in accumulation of misfolded proteins, known as ER stress. In response, the unfolded protein response (UPR) restores proteostasis or responds by controlling cellular fate, including increased expression of activating transcription factor 4 (ATF4) that can lead to apoptosis.
View Article and Find Full Text PDFSensors (Basel)
January 2025
The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China.
Video instance segmentation, a key technology for intelligent sensing in visual perception, plays a key role in automated surveillance, robotics, and smart cities. These scenarios rely on real-time and efficient target-tracking capabilities for accurate perception and intelligent analysis of dynamic environments. However, traditional video instance segmentation methods face complex models, high computational overheads, and slow segmentation speeds in time-series feature extraction, especially in resource-constrained environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!