A low molecular weight cationic peptide was isolated from Robinia pseudoacacia seed and tested in vitro against seven bacteria (Corynebacterium michiganense, Staphylococcus aureus, Bacillus subtilis, Erwinia carotovora subsp. carotovora, Pseudomonas syringae pv syringae, Xanthomonas campestris pv campestris, and Escherichia coli). The peptide inhibited the growth of the tested strains. The effective concentrations required for 50% inhibition of bacterial growth ranged between 20 and 120 microg ml(-1) protein. S. aureus was found to be the most sensitive strain, however, E. coli was not affected much when compared with others. Reduction of antibacterial activity of the peptide with CaCl2 addition into the growth medium was also observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2004.10.020 | DOI Listing |
Arch Bronconeumol
December 2024
Pulmonology Service, Cruces University Hospital (OSI EEC), Barakaldo, Spain; BioBizkaia Health Research Institute, Spain.
The Spanish Society of Pneumology and Thoracic Surgery (SEPAR) and the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) have developed together Clinical Practice Guidelines (GPC) on the management of people affected by tuberculosis (TB) resistant to drugs with activity against Mycobacterium tuberculosis. These clinical practice guidelines include the latest updates of the SEPAR regulations for the diagnosis and treatment of drug-resistant TB from 2017 and 2020 as the starting point. The methodology included asking relevant clinical questions based on PICO methodology, a literature search focusing on each question, and a systematic and comprehensive evaluation of the evidence, with a summary of this evidence for each question.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering (FEQ), Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil.
Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.
View Article and Find Full Text PDFPhytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.
View Article and Find Full Text PDFDrugs must accumulate at their target site to be effective, and inadequate uptake of drugs is a substantial barrier to the design of potent therapies. This is particularly true in the development of antibiotics, as bacteria possess numerous barriers to prevent chemical uptake. Designing compounds that circumvent bacterial barriers and accumulate to high levels in cells could dramatically improve the success rate of antibiotic candidates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!