Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The possibility that Tl(OH)3, the main Tl3+ specie present in water solutions, could interfere with the normal functioning of the glutathione-dependent antioxidant defense system was investigated. For this purpose, we used both the purified components of this system and rat brain cytosolic fractions. Tl(OH)3 (1-25 microM) significantly decreased the content of reduced glutathione (GSH) in both experimental systems, caused by GSH oxidation. In the same range of concentrations Tl(OH)3 inhibited glutathione peroxidase (GPx) activity in both models, using cumene hydroperoxide as the substrate. No alterations in the capacity of GPx activity to metabolize H2O2 were observed. Both in purified GR as well as in the cytosolic fraction, Tl(OH)3 (1-5 microM) inhibited GR activity, with a partial recovery of the activity at higher concentrations. While Tl(OH)3 inhibited the GR diaphorase activity of purified GR, in a concentration (1-25 microM) dependent manner, this effect was only observed in the cytosolic fractions at the highest concentration assessed (25 microM). Results indicate that, similarly to previous findings for Tl+ and Tl3+, Tl(OH)3 also alters the glutathione-dependent antioxidant defense system. The observed alterations of this important antioxidant protective pathway by the major Tl3+ specie in water solutions could be one mechanism involved in the oxidative stress associated to Tl-intoxication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2004.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!