Aim: To investigate the effects of complete Freund adjuvant (CFA) on inflammatory hyperalgesia and morphological change of the coexistence of interleukin-1 beta (IL-1beta) and type I IL-1 receptor (IL-1RI) in neurons and glia cells of rat dorsal root ganglion (DRG).
Methods: The pain-related parameters and the expression of IL-1RI and IL-1beta positive neurons and glia cells of DRG in normal saline (NS) and adjuvant-induced arthritic (AA) group were examined with pain behavior assessment methods and immunohistochemical assay, respectively.
Results: Five hours, 1 d, and 2 d after intra-articular injection of 50 microL CFA, tactile hyperalgesia induced by CFA was observed in the foot flexion and extension scores of the ipsilateral hindpaw of AA group. Three days after injection, the distribution of IL-1RI/IL-1beta double-stained coexisted neurons and glia cells were observed in ipsilateral DRG of both groups. The number of IL-1beta positive neurons, IL-1RI positive neurons, IL-1beta/IL-1RI double-stained neurons, and IL-1RI positive glia cells in ipsilateral DRG of the AA group were higher than that of NS group (P<0.05 or P<0.01).
Conclusion: The coexistence of IL-1beta and IL-1RI in neurons and nonneuronal cells suggests an as yet unknown autocrine and/or paracrine function of IL-1beta in the DRG. The function was enhanced in articular arthritis induced by CFA and could play an important role in hyperalgesia under inflammatory conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1745-7254.2005.00522.x | DOI Listing |
Inflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFNutrients
January 2025
Department of Management, Sapienza University of Rome, 00161 Rome, Italy.
Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.
Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.
Molecules
January 2025
Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.
Inflammation has always been considered a trigger or consequence of neurodegenerative diseases, and the inhibition of inflammation in the central nervous system can effectively protect nerve cells. Several studies have indicated that various natural products inhibit neuroinflammation. Among these, Antarctic fungal metabolites have pharmacological activities and a developmental value.
View Article and Find Full Text PDFLife (Basel)
January 2025
Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City 14269, Mexico.
Background: The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease.
Objective: This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases.
Int J Mol Sci
January 2025
Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany.
Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!