Rat cerebral nonsynaptic mitochondria were incubated in medium containing 2 mM glutamine (Gln) or 2 mM glutamate (Glu), in the presence of a Gln uptake inhibitor histidine (His) as well as other basic amino acids, lysine and arginine (Lys, Arg) not inhibiting Gln uptake. Subsequently, the mitochondrial contents of Glu and Gln were determined by HPLC. Incubation in the presence of Glu alone increased the Glu content from approximately 3.5 to 15 nmol/mg protein, without affecting the Gln content. On the other hand, incubation with Gln increased the content of Gln from approximately 1.5 to approximately 12 nmol/mg, and that of Glu to 10 nmol/mg. As expected, addition of His did not alter the Glu and Gln content resulting from incubation with Glu. However, His significantly decreased to almost the preincubation level the content of Glu in mitochondria incubated with Gln, without affecting the content of Gln. No other amino acid had any effect on these parameters. The results point to the existence of distinct Gln pools, one of which is accessible to external Gln via a His-sensitive transporter and is accessible for deamidation in the mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-004-6885-x | DOI Listing |
J Agric Food Chem
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
Legumes are well-known for symbiotic nitrogen fixation, whereas associative nitrogen fixation for nonlegume plants needs more attention. Most associative nitrogen-fixing bacteria are applied in their original plant species and need further study for broad adaptation. Additionally, if isolated nitrogen-fixing bacteria could function under fertilizer conditions, it is often ignored.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
The fasting hypoglycemic effect of casein hydrolysate (CH) was investigated in db/db diabetic-like mice using a multiomics integrated analysis of peptidome, transcriptome, and metabolome. Results showed that the oral administration of CH at a dose of 600 mg/kg/day for 4 weeks reduced the fasting blood glucose levels by 14.73 ± 9.
View Article and Find Full Text PDFPLoS One
January 2025
Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America.
Introduction: Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task.
View Article and Find Full Text PDFDis Esophagus
January 2025
Department of Surgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
Background: The wound healing effects of a specialized amino acid supplement containing calcium beta-hydroxy-beta-methylbutyrate, L-arginine, and L-glutamine (HMB/Arg/Gln) have been reported. This study aimed to investigate the effectiveness of HMB/Arg/Gln in the perioperative management of patients with thoracic esophageal cancer.
Methods: This retrospective cohort study included 131 patients who underwent esophagectomy for thoracic esophageal cancer between January 2016 and November 2023.
PLoS One
January 2025
Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh.
The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!