Long-term exposure to steroidal estrogens is a key factor contributing to increases in the risk of developing breast cancer. Proposed mechanisms include receptor-activated increases in the rate of cell proliferation leading to the accumulation of genetic damage resulting from reading errors, and the production of DNA damage by species arising from metabolism of 17beta-estradiol (E2) resulting in mutations. In support of the second mechanism, catechol metabolites of E2 induce DNA damage in vitro. In the present study, utilizing the single-cell gel electrophoresis (Comet) assay, we observed increases in the number of single-strand breaks in estrogen receptor alpha-positive (MCF-7) and -negative (MDA-MB-231) breast cancer cells exposed to E2 (for 24 hr) or 4-hydroxy-17beta-estradiol (4-OH-E2; for 2 hr). The concentrations of 4-OH-E2 sufficient to induce these effects were approximately 100 nM, substantially lower than reported previously. The catechol 2-hydroxy-17beta-estradiol (2-OH-E2) also induced strand breaks. 2-OH-E2, often referred to as an improbable carcinogen in humans, is not a major metabolite of E2 in the breast; however, our findings show that it is as DNA-damaging as 4-OH-E2. Formamidopyrimidine glycosylase posttreatment of E2-, 4-OH-E2-, and 2-OH-E2-exposed MCF-7 cells led to an up to sixfold increase in mean tail moment, suggesting that oxidative DNA damage was formed. Comet formation could be partially attenuated by coincubation with dimethylsulfoxide, attributing a small DNA-damaging role to oxyradicals emanating from catechol redox cycling. Similar findings were obtained with MDA-MB-231 cells, indicating that estrogen receptor status is not relevant to these effects. Our observations show that exposure to E2 adds to the oxidative load of cells, and this may contribute to genomic instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.20104 | DOI Listing |
ACS Nano
January 2025
Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China.
Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed.
View Article and Find Full Text PDFZool Res
January 2025
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China.
DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking.
View Article and Find Full Text PDFiScience
January 2025
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
We present a study of rare germline predisposition variants in 954 unrelated individuals with multiple myeloma (MM) and 82 MM families. Using a candidate gene approach, we identified such variants across all age groups in 9.1% of sporadic and 18% of familial cases.
View Article and Find Full Text PDFiScience
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set ( = 486) and evaluated on internal validation set ( = 209), HPPH validation set ( = 54), and TCGA validation set ( = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set ( = 100).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!