Phosphorite deposits in marine sediments are a long-term sink for an essential nutrient, phosphorus. Here we show that apatite abundance in sediments on the Namibian shelf correlates with the abundance and activity of the giant sulfur bacterium Thiomargarita namibiensis, which suggests that sulfur bacteria drive phosphogenesis. Sediments populated by Thiomargarita showed sharp peaks of pore water phosphate (=300 micromolar) and massive phosphorite accumulations (>/=50 grams of phosphorus per kilogram). Laboratory experiments revealed that under anoxic conditions, Thiomargarita released enough phosphate to account for the precipitation of hydroxyapatite observed in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1103096 | DOI Listing |
Sci Adv
January 2025
Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium.
The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
In prokaryotes, the non-bridging oxygen in the DNA sugar-phosphate backbone can be enzymatically replaced by a sulfur atom, resulting in phosphorothioate (PT) modification. However, the mechanism underlying the oxygen-to-sulfur substitution remains enigmatic. In this study, we discovered a hypercompact DNA phosphorothioation system, TdpABC, in extreme thermophiles.
View Article and Find Full Text PDFRecent Pat Biotechnol
December 2024
Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.
Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.
Int Dent J
January 2025
Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China. Electronic address:
Objective: To evaluate the effect of the toothpaste containing ε-poly-L-lysine (ε-PL) and funme peptide (FP) as key components on oral microbial composition and oral health.
Methods: An oral microbiome study was initially carried out to analyze the variation in the oral microbiota before and after use of antimicrobial peptide (AMP) toothpaste. Subsequently, a clinical trial was independently performed to assess the efficacy of AMP toothpaste by measuring the dental plaque index (PLI), volatile sulfur compounds (VSCs) levels, modified bleeding index (mBI), and bleeding on probing rate (BOP%).
Proc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!