Graft-vs-host disease (GVHD) is a devastating, frequently fatal, pathological condition associated with lesions in specific target organs, including the intestine, liver, lung, and skin, as well as pancytopenia and alopecia. Bone marrow (BM) atrophy is observed in acutely diseased animals, but the underlying mechanisms of hemopoietic stem cell depletion remained to be established. We used an experimental mouse model of acute GVHD in which parental cells were injected into F(1) hosts preconditioned by sublethal irradiation. The resulting graft-vs-host response was kinetically consistent, resulting in lethality within 3 wk. We observed disease pathology in the liver and small intestine, and consistent with previous observations, we found BM atrophy to be a factor in the onset of acute disease. The product of the protooncogene, p53, is known to be a key player in many physiological examples of apoptosis. We investigated the role of p53 in the apoptosis of BM cells (BMC) during the development of acute disease and found that at least one copy of the p53 gene is necessary for depletion of BM and subsequent lethality in host animals. BM depletion was preceded by induction of the death receptor, Fas, on the surface of host stem cells, and induction of Fas was coincidental with the sensitization of BMC to Fas-mediated apoptosis. Our data indicate that BM depletion in acute GVHD is mediated by p53-dependent up-regulation of Fas on BMC, which leads to Fas-dependent depletion and subsequent disease.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.174.3.1291DOI Listing

Publication Analysis

Top Keywords

role p53
8
model acute
8
acute gvhd
8
acute disease
8
depletion subsequent
8
disease
6
acute
5
depletion
5
fas
4
p53 fas
4

Similar Publications

In vitro genotoxicity has historically served a hazard identification role, with simple binary outcomes provided for each of several single endpoint assays. This will need to change, given: (i) efforts to curtail animal testing, (ii) the increased use of multiplexed in vitro assays and the ongoing development of NAMS, and (iii) the desire to holistically consider quantitative results from multiple biomarkers/endpoints that take potency into consideration. To help facilitate more quantitative analyses of multiple biomarkers and/or assay streams, we explored the combined use of PROAST and Toxicological Prioritization Index (ToxPi) software.

View Article and Find Full Text PDF

Loss of N-6 adenine-specific DNA methyltransferase 1 leads to meiotic prophase abnormalities and male sub-fertility in mice.

Biol Reprod

March 2025

The Institute of Cardiovascular Sciences, School of Basic Medical Sciences; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Mammalian sexual reproduction critically relies on the generation of haploid gametes following a specialized cell division process known as meiosis. Here, we demonstrate that N-6 Adenine-Specific DNA methyltransferase 1 (N6AMT1) plays a crucial role in the progression of meiosis during spermatogenesis, as follows. N6AMT1 was expressed in germ cells throughout the entire process of spermatogenesis, with a peak in mRNA levels in spermatocytes at the prophase I stage of meiosis.

View Article and Find Full Text PDF

March2 Alleviates Aortic Aneurysm/Dissection by Regulating PKM2 Polymerization.

Circ Res

March 2025

Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China. (Y.E.L., S.L., Litao Wang, Y.D., L. Wu, H.C., T.Z., J.L., S.X., L.L., J.G., J.R., Y.Z.).

Background: Aortic aneurysm/dissection (AAD) is a life-threatening disease lacking effective pharmacological treatment. Protein ubiquitination plays a pivotal role in cardiovascular diseases. However, the possible contribution of the E3 ubiquitin ligase March2 (membrane-associated RING finger protein 2) to the cause of AAD remains elusive.

View Article and Find Full Text PDF

A Truncated Mutation of TP53 Promotes Chemoresistance in Tongue Squamous Cell Carcinoma.

Int J Mol Sci

March 2025

MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.

Tongue squamous cell carcinoma (TSCC), a subtype of head and neck squamous cell carcinoma, is characterized by frequent chemoresistance. Genetic mutations commonly observed in TSCC play a critical role in malignant progression; thus, elucidating their functional significance is essential for developing effective treatment strategies. To more accurately investigate the relationship between mutations and chemoresistance, we established low-passage TSCC cells, CTSC-1, obtained from a chemoresistant patient, and CTSC-2, from a treatment-naïve patient.

View Article and Find Full Text PDF

Plant secondary metabolites are known to be valuable agents to hamper inflammation owing to their multiple mechanisms of action. This study investigates the molecular mechanisms underlying the anti-inflammatory effects of vicenin-2 in lipopolysaccharide (LPS)-stressed THP-1 cells. After ascertaining the safety of vicenin-2 in our in vitro model, we assessed the anti-inflammatory potential of this flavonoid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!