Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Sialylation involving tumor formation and invasive behavior goes along with altered sialyltransferase (ST) activity. A potent ST inhibitor, soyasaponin I (SsaI), was discovered to selectively inhibit the cellular alpha2,3-sialyltranserase activity. In this study, we further test the effects of SsaI on modifying the metastatic and invasive behaviors of cancer cell lines.
Methods: Nonmetastatic breast cancer cell line, MCF-7, and highly metastastic breast cancer cell line, MDA-MB-231, were used to investigate the effects of SsaI on tumor cells.
Results: SsaI did not affect cell growth cycle and also failed to inhibit cell growth in this study (the concentration of SsaI < or=100 muM). SsaI was as predicted to successfully inhibit cellular alpha2,3-ST activity and depressed the dose-dependent tumor cell surface alpha2,3-sialic acid expression. In addition, different concentrations of SsaI did stimulate MCF-7 cell adhesion to collagen type I linearly and significantly enhanced cell adhesion to the Matrigel-matrix. Furthermore, SsaI significantly decreased MDA-MB-231 cell migration. Reverse transcriptase polymerase chain reaction for evaluating mRNA expression of ST3Gal I, III and IV showed that SsaI also down-regulated the expression of ST3Gal IV but did not affect the other two.
Conclusions: The results showed that SsaI was implicated in the invasive behavior of tumor cells, suggesting that altered alpha2,3-sialylation pathway played a crucial role in the adhesion and tumor metastases. SsaI is a good candidate for studying the biological roles of ST, and might provide a new preventive strategy in tumor metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygyno.2004.10.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!