The Arg-Gly-Asp (RGD) motif is known to mediate cell adhesion to several extracellular matrix components as well as cell-cell interactions. In the present study, we investigated whether the RGDS peptide interferes with cell-cell recognition-based events such as allogeneic activation of PBMC and PBMC adhesion to human umbilical vein endothelial cells (HUVEC). We show here for the first time, to our knowledge, that RGDS significantly inhibits adhesion of activated PBMC to HUVEC; in addition, RGDS inhibits PBMC allogenenic activation in human mixed lymphocyte reaction assays. Caspases played a pivotal role in both events, because preventing their activation abolished or strongly reduced the observed inhibitory effect. The RGDS antirecognition effect was strongly increased by pretreatment of HUVEC with RGDS, which affected mostly T lymphocyte adhesion to HUVEC. These results indicate that PBMC allogeneic activation, as well as reciprocal recognition between activated PBMC and endothelial cells, are RGDS-dependent events that occur through a dual effect involving anti-adhesive and caspase-dependent mechanisms. These data suggest a potential role of RGDS in cell-mediated immunity, inflammation and organ transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1711.2004.01300.xDOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
rgds peptide
8
adhesion activated
8
human umbilical
8
umbilical vein
8
vein endothelial
8
allogeneic activation
8
rgds inhibits
8
activated pbmc
8
rgds
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!