Despite the commonality and study of hybridization in plants, there are few studies between invasive and noninvasive species that examine the genetic variability and gene flow of cytoplasmic DNA. We describe the phylogeographical structure of chloroplast DNA (cpDNA) variation within and among several interspecific populations of the putative native, Carpobrotus chilensis and the introduced, Carpobrotus edulis (Aizoaceae). These species co-occur throughout much of coastal California and form several 'geographical hybrid populations'. Two hundred and thirty-seven individuals were analysed for variation in an approximate 7.0 kb region of the chloroplast genome using PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) data. Phylogenetic analyses and cpDNA population differentiation were conducted for all morphotypes. Historic geographical dispersion and the coefficient of ancestry of the haplotypes were determined using nested clade analyses. Two haplotypic groupings (I and II) were represented in C. chilensis and C. edulis, respectively. The variation in cpDNA data is in agreement with the previously reported allozyme and morphological data; this supports relatively limited variation and high population differentiation among C. chilensis and hybrids and more wide-ranging variation in C. edulis and C. edulis populations backcrossed with C. chilensis. C. chilensis disproportionately contributes to the creation of hybrids with the direction of gene flow from C. chilensis into C. edulis. The cpDNA data support C. chilensis as the maternal contributor to the hybrid populations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2005.02417.xDOI Listing

Publication Analysis

Top Keywords

gene flow
8
population differentiation
8
chilensis edulis
8
cpdna data
8
chilensis
7
variation
5
edulis
5
genetic variation
4
variation phylogeographic
4
phylogeographic analyses
4

Similar Publications

Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.

Adv Biotechnol (Singap)

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.

View Article and Find Full Text PDF

How the interplay of biotic and abiotic factors shapes current genetic diversity at the community level remains an open question, particularly in the deep sea. Comparative phylogeography of multiple species can reveal the influence of past climatic events, geographic barriers, and species life history traits on spatial patterns of genetic structure across lineages. To shed light on the factors that shape community-level genetic variation and to improve our understanding of deep-sea biogeographic patterns, we conducted a comparative population genomics study on seven hydrothermal vent species co-distributed in the Back-Arc Basins (BABs) of the Southwest Pacific region.

View Article and Find Full Text PDF

FPRL2 has been shown to be associated with a variety of tumours but has not been well studied in breast cancer. In this study, We combine molecular biology techniques with bioinformatics to analyze the role of FPRL2 in breast cancer and adriamycin resistance. By utilizing bioinformatics, we mine TCGA and GEO public databases to assess FPRL2 expression in breast cancer patients and its correlation with patient prognosis.

View Article and Find Full Text PDF

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

Arginase-1-specific T cells target and modulate tumor-associated macrophages.

J Immunother Cancer

January 2025

National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark

Background: Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!