A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism. | LitMetric

Genome-scale analysis of predicted metabolic pathways has revealed the common occurrence of apparent redundancy for specific functional units, or metabolic modules. In many cases, mutation analysis does not resolve function, and instead, direct experimental analysis of metabolic flux under changing conditions is necessary. In order to use genome sequences to build models of cellular function, it is important to define function for such apparently redundant systems. Here we describe direct flux measurements to determine the role of redundancy in three modules involved in formaldehyde assimilation and dissimilation in a bacterium growing on methanol. A combination of deuterium and (14)C labeling was used to measure the flux through each of the branches of metabolism for growth on methanol during transitions into and out of methylotrophy. The cells were found to differentially partition formaldehyde among the three modules depending on the flux of methanol into the cell. A dynamic mathematical model demonstrated that the kinetic constants of the enzymes involved are sufficient to account for this phenomenon. We demonstrate the role of redundancy in formaldehyde metabolism and have uncovered a new paradigm for coping with toxic, high-flux metabolic intermediates: a dynamic, interconnected metabolic loop.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC539335PMC
http://dx.doi.org/10.1371/journal.pbio.0030016DOI Listing

Publication Analysis

Top Keywords

redundancy formaldehyde
8
formaldehyde metabolism
8
role redundancy
8
three modules
8
flux
5
metabolic
5
flux analysis
4
analysis uncovers
4
uncovers key
4
key role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!