Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose Of Review: To review as best the critical care clinicians can recruit the acute respiratory distress syndrome (ARDS) lungs and keep the lungs opened, assuring homogeneous ventilation, and to present the experimental and clinical results of these mechanical ventilation strategies, along with possible improvements in patient outcome based on selected published medical literature from 1972 to 2004 (highlighting the period from June 2003 to June 2004 and recent results of the authors' group research).
Recent Findings: In the experimental setting, repeated derecruitments accentuate lung injury during mechanical ventilation, whereas open lung concept strategies can attenuate lung injury. In the clinical setting, recruitment maneuvers improve short-term oxygenation in ARDS patients. A recent prospective clinical trial showed that low versus intermediate positive end-expiratory pressure (PEEP) levels (8 vs 13 cm H2O) associated with low tidal ventilation had the same effect on ARDS patient survival. Nevertheless, both conventional and electrical impedance thoracic tomography studies indicate that stepwise PEEP recruitment maneuvers increase lung volume and the recruitment percentage of lung tissue, and higher levels of PEEP (18-26 cm H2O) are necessary to keep the ARDS lungs opened and assure a more homogeneous low tidal ventilation.
Summary: Stepwise PEEP recruitment maneuvers can open collapsed ARDS lungs. Higher levels of PEEP are necessary to maintain the lungs open and assure homogenous ventilation in ARDS. In the near future, thoracic CT associated with high-performance monitoring of regional ventilation (electrical impedance tomography) may be used at the bedside to determine the optimal mechanical ventilation of ARDS patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00075198-200502000-00004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!