Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
PCR-based mutagenesis is a cornerstone of molecular biology and protein engineering studies. Herein we describe a rapid and highly efficient mutagenesis method using type IIs restriction enzymes. A template gene is amplified into two separate PCR fragments using two pairs of anchor and mutagenic primers. Mutated sequences are located near the recognition site of a type IIs restriction enzyme. After digestion of two fragments with a type IIs enzyme, exposed cohesive ends that are complementary to each other are then ligated together to generate a mutated gene. We applied this method to introduce multiple site-directed mutations in EGFP and Bcl-2 family genes and observed perfect mutagenesis efficiency at the desired sites. This efficient and cost-effective mutagenesis method can be applied to a wide variety of structural and functional studies in cell physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00517.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!