On the division of cortical cells into simple and complex types: a comparative viewpoint.

J Neurophysiol

Visual Sciences, Research School of Biological Sciences, Australian National Univ., Canberra, ACT 2601, Australia.

Published: June 2005

Hubel and Weisel introduced the concept of cells in cat primary visual cortex being partitioned into two categories: simple and complex. Subsequent authors have developed a quantitative measure to distinguish the two cell types based on the ratio between modulated responses at the stimulus frequency (F1) and unmodulated (F0) components of the spiking responses to drifting sinusoidal gratings. It has been shown that cells in anesthetized cat and monkey cortex have bimodal distributions of F1/F0 ratios. A clear local minimum or dip exists in the distribution at a ratio close to unity. Here we present a comparison of the distributions of the F1/F0 ratios between cells in the primary visual cortex of the eutherian cat and marsupial Tammar wallaby, Macropus eugenii. This is the first quantitative description of any marsupial cortex using the F1/F0 ratio and follows earlier papers showing that cells in wallaby cortex are tightly oriented and spatial frequency tuned. The results reveal a bimodal distribution in the wallaby F1/F0 ratios that is very similar to that found in the rat, cat, and monkey. Discussion focuses on the mechanisms that could lead to such similar cell distributions in animals with diverse behaviors and phylogenies.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01159.2004DOI Listing

Publication Analysis

Top Keywords

f1/f0 ratios
12
simple complex
8
primary visual
8
visual cortex
8
cat monkey
8
distributions f1/f0
8
cells
5
cortex
5
division cortical
4
cortical cells
4

Similar Publications

Layer 6 appears to perform a very important role in the function of macaque primary visual cortex, V1, but not enough is understood about the functional characteristics of neurons in the layer 6 population. It is unclear to what extent the population is homogeneous with respect to their visual properties or if one can identify distinct subpopulations. Here we performed a cluster analysis based on measurements of the responses of single neurons in layer 6 of primary visual cortex in male macaque monkeys () to achromatic grating stimuli that varied in orientation, direction of motion, spatial and temporal frequency, and contrast.

View Article and Find Full Text PDF

Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive.

View Article and Find Full Text PDF

Reduction of the Harmonic Series Influences Musical Enjoyment With Cochlear Implants.

Otol Neurotol

January 2017

*Columbia University College of Physicians and Surgeons †Department of Otolaryngology-Head and Neck Surgery, Columbia University Cochlear Implant Center, New York, New York.

Objective: Cochlear implantation is associated with poor music perception and enjoyment. Reducing music complexity has been shown to enhance music enjoyment in cochlear implant (CI) recipients. In this study, we assess the impact of harmonic series reduction on music enjoyment.

View Article and Find Full Text PDF

Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤ 0.

View Article and Find Full Text PDF

Acetylcholine (ACh) is secreted from cholinergic neurons in the basal forebrain to regions throughout the cerebral cortex, including the primary visual cortex (V1), and influences neuronal activities across all six layers via a form of diffuse extrasynaptic modulation termed volume transmission. To understand this effect in V1, we performed extracellular multi-point recordings of neuronal responses to drifting sinusoidal grating stimuli from the cortical layers of V1 in anesthetized rats and examined the modulatory effects of topically administered ACh. ACh facilitated or suppressed the visual responses of individual cells with a laminar bias: response suppression prevailed in layers 2/3, whereas response facilitation prevailed in layer 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!