Slr1694 is a BLUF (sensor of blue light using flavin adenine dinucleotide) protein and a putative photoreceptor in the cyanobacterium Synechocystis sp. PCC6803. Illumination of Slr1694 induced a signaling light state concurrent with a red shift in the UV-visible absorption of flavin, and formation of the bands from flavin and apo-protein in the light-minus-dark Fourier transform infrared (FTIR) difference spectrum. Replacement of Tyr8 with phenylalanine abolished these changes. The light state relaxed to the ground dark state, during which the FTIR bands decayed monophasically. These bands were classifiable into three groups according to their decay rates. The C4=O stretching bands of a flavin isoalloxazine ring had the highest decay rate, which corresponded to that of the absorption red shift. The result indicated that the hydrogen bonding at C4=O is responsible for the UV-visible red shift, consistent with the results of density functional calculation. All FTIR bands and the red shift decayed at the same slower rate in deuterated Slr1694. These results indicated that the dark relaxation from the light state is limited by proton transfer. In contrast, a constrained light state formed under dehydrated conditions decayed much more slowly with no deuteration effects. A photocycle mechanism involving the proton transfer was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci003DOI Listing

Publication Analysis

Top Keywords

light state
16
red shift
16
dark relaxation
8
sensor blue
8
blue light
8
cyanobacterium synechocystis
8
synechocystis pcc6803
8
bands flavin
8
ftir bands
8
proton transfer
8

Similar Publications

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury.

Cell Death Dis

January 2025

Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.

UVB irradiation induces diverse modalities of regulatory cell death in keratinocytes. Recently, the pattern of coexistence of pyroptosis, apoptosis, and necroptosis has been termed PANoptosis; however, whether PANoptosis occurs in keratinocytes in UVB-induced skin injury remains unclear. We observed that the key molecules of GSDMD-mediated pyroptosis, apoptosis, and necroptosis, which are N-terminal GSDMD, cleaved caspase-3/PARP, and phosphorylated MLKL, respectively, were elevated in keratinocytes of UVB-challenged mice and human skin tissue.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Biofouling dynamics and antifouling innovations: Transitioning from traditional biocides to nanotechnological interventions.

Environ Res

January 2025

Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!