Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana.

Plant Cell Physiol

Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Apartado Postal 629, 36500 Irapuato, Guanajuato, México.

Published: January 2005

When growing under limiting phosphate (P) conditions, Arabidopsis thaliana plants show dramatic changes in root architecture, including a reduction in primary root length, increased formation of lateral roots and greater formation of root hairs. Here we report that primary root growth inhibition by low P is caused by a shift from an indeterminate to a determinate developmental program. In the primary root, the low P-induced determinate growth program initiates with a reduction of cell elongation followed by the progressive loss of meristematic cells. At later stages, cell proliferation ceases and cell differentiation takes place at the former cell elongation and meristematic regions of the primary root. In low P, not only the primary but also almost all mature lateral roots enter the determinate developmental program. Kinetic studies of expression of the cell cycle marker CycB1;1:uidA and the quiescent center (QC) identity marker QC46:GUS showed that in low P conditions, reduction in proliferation in the primary root was preceded by alterations in the QC. These results suggest that in Arabidopsis, P limitation can induce a determinate root developmental program that plays an important role in altering root system architecture and that the QC could act as a sensor of environmental signals.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci011DOI Listing

Publication Analysis

Top Keywords

primary root
20
developmental program
16
determinate developmental
12
root
9
arabidopsis thaliana
8
lateral roots
8
root low
8
cell elongation
8
primary
6
determinate
5

Similar Publications

Evaluation the protective role of baicalin against HO-driven oxidation, inflammation and apoptosis in bovine mammary epithelial cells.

Front Vet Sci

December 2024

Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.

Mastitis is one of the most common diseases in dairy farms. During the perinatal period, the bovine mammary epithelial cells (BMECs) of High-yielding dairy cows accelerate metabolism and produce large amounts of reactive oxygen species (ROS). It is one of the primary causes of mastitis and will lead to the breakdown of redox balance, which will induce oxidative stress, inflammation, and apoptosis.

View Article and Find Full Text PDF

Effects of endophytes on early growth and ascorbate metabolism in .

Front Plant Sci

December 2024

Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States.

Understanding the early interactions between plants and endophytes will contribute to a more systematic approach to enhancing endophyte-mediated effects on plant growth and environmental stress resistance. This study examined very early growth and ascorbate metabolism after seed treatment of with three different endophytes. The three endophytes used were pb1(Bapb1), (Ml) and SLB4 (SLB4).

View Article and Find Full Text PDF

Objective: To translate and cross-culturally adapt the Headache Disability Inventory (HDI) into Italian and study its reliability and validity.

Methods: A total of 132 participants with primary and secondary headaches were included. The translation was performed following international guidelines with forward and back translation procedures.

View Article and Find Full Text PDF

Background: Peanut stem rot, caused by Sclerotium rolfsii, has become increasingly prevalent in China, leading to significant yield losses in peanut production. To effectively manage peanut stem rot, we assessed the potential application of difenoconazole against peanut stem rot.

Results: Difenoconazole has a good inhibitory effect on the mycelial growth of S.

View Article and Find Full Text PDF

Cytokinin Plays a Multifaceted Role in Ralstonia solanacearum-Triggered Plant Disease Development.

Mol Plant Pathol

December 2024

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China.

Cytokinin signalling plays both positive and negative roles in plant resistance to pathogens. It is not clear whether the role of cytokinin changes at the different stages of pathogen infection. Arabidopsis thaliana sequentially exhibits distinct root morphological symptoms during Ralstonia solanacearum infection, which offers a good system to investigate function of cytokinin in the whole pathogen infection process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!