We found novel vesicles derived from rough endoplasmic reticulum (ER) in rice endosperm. The novel vesicles had characteristic structures different from that of the ER-derived protein body type I and the Golgi-derived dense vesicles. Immunocytochemical analysis revealed that the novel vesicles are derived directly from the aggregates of vacuolar storage proteins in the rough ER. In addition, BiP, an ER-resident molecular chaperone, was localized in the novel vesicles, but also in protein storage vacuoles (PSVs). These results suggest that the novel vesicles mediate transport of vacuolar storage proteins directly from the ER to PSVs in rice endosperm.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci019DOI Listing

Publication Analysis

Top Keywords

novel vesicles
20
vacuolar storage
12
storage proteins
12
rice endosperm
12
derived directly
8
endoplasmic reticulum
8
transport vacuolar
8
endosperm novel
8
vesicles derived
8
novel
6

Similar Publications

Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.

View Article and Find Full Text PDF

Parkinson's disease is characterized by the presence of α-synuclein (α-syn) primarily containing Lewy bodies in neurons. Despite decades of extensive research on α-syn accumulation, its molecular mechanisms have remained largely unexplored. Recent studies by us and others have suggested that extracellular vesicles (EVs), especially exosomes, can mediate the release of α-syn from cells, and inhibiting this pathway could result in increased intracellular α-syn levels.

View Article and Find Full Text PDF

Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.

View Article and Find Full Text PDF

A novel three-dimensional co-culture model for studying exosome-mediated cell interactions in glioblastoma.

Biochim Biophys Acta Gen Subj

January 2025

Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, PR China. Electronic address:

Three-dimensional(3D) cell culture systems provide a larger space for cell proliferation, which is crucial for simulating cellular behavior and drug responses in the tumor microenvironment. In this study, we developed a novel 3D co-culture system for cell interactions, utilizing a commercialized bioreactor-microcarrier system. Mesenchymal stem cells (MSCs) were extracted via enzymatic digestion, and markers CD105 and CD31 were identified.

View Article and Find Full Text PDF

Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.

Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!