Recent advances in genomic studies and the sequenced genome information have made it possible to utilize phenotypic mutants for characterizing relevant genes at the molecular level and reveal their functions. Various mutants and strains expressing phenotypic and physiological variations provide an indispensable source for functional analysis of genes. In this review, we cover almost all of the rice mutants found to date and the variant strains that are important in developmental, physiological and agronomical studies. Mutants and genes showing defects in vegetative organs, i.e. leaf, culm and root, inflorescence reproductive organ and seeds with an embryo and endosperm are described with regards to their phenotypic and molecular characteristics. A variety of alleles detected by quantitative trait locus analysis, such as heading date, disease/insect resistance and stress tolerance, are also shown.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci506DOI Listing

Publication Analysis

Top Keywords

rice mutants
8
mutants genes
8
genes
4
genes organ
4
organ development
4
development morphogenesis
4
morphogenesis physiological
4
physiological traits
4
traits advances
4
advances genomic
4

Similar Publications

OsNCED5 confers cold stress tolerance through regulating ROS homeostasis in rice.

Plant Physiol Biochem

December 2024

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice.

View Article and Find Full Text PDF

Subtilisin-like protease 4 regulates cold tolerance through cell wall modification in rice.

Sci Rep

January 2025

Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.

Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress.

View Article and Find Full Text PDF

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

Background: Temozolomide (TMZ) treatment has demonstrated, but variable, impact on glioma prognosis. This study examines associations of survival with DNA repair gene germline polymorphisms among glioma patients who did and did not have TMZ treatment. Identifying genetic markers which sensitize tumor cells to TMZ could personalize therapy and improve outcomes.

View Article and Find Full Text PDF

A nuclear-localized cysteine desulfhydrase, LCD1, plays a crucial role in mediating endogenous hydrogen sulfide production in tomatoes. However, the mechanism underlying the nuclear localization of SlLCD1 is not yet fully understood. In this study, it was found that SlLCD1 specifically interacted with nuclear import receptor importin α3 (SlIMPA3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!