GATA factors in Drosophila heart and blood cell development.

Semin Cell Dev Biol

Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.

Published: February 2005

GATA transcription factors comprise an evolutionarily conserved family of proteins that function in the specification and differentiation of various cell types during animal development. In this review, we examine current knowledge of the structure, expression, and function of the Pannier and Serpent GATA factors as they relate to cardiogenesis and hematopoiesis in the Drosophila system. We also assess the molecular and genetic characteristics of the Friend of GATA protein U-shaped, which serves as a regulator of Pannier and Serpent function in these two developmental processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2004.10.005DOI Listing

Publication Analysis

Top Keywords

gata factors
8
pannier serpent
8
gata
4
factors drosophila
4
drosophila heart
4
heart blood
4
blood cell
4
cell development
4
development gata
4
gata transcription
4

Similar Publications

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings.

View Article and Find Full Text PDF

GATA1-mediated macrophage polarization via TrkB/cGMP-PKG signaling pathway to promote the development of preeclampsia.

Eur J Med Res

January 2025

Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, 250012, Shandong, People's Republic of China.

Background: Preeclampsia (PE) is a severe pregnancy complication characterized by hypertension and proteinuria. PE poses a substantial threat to the health of both mothers and fetuses, and currently, there is no definitive treatment available. Recent studies have indicated that the transcription factor GATA1 may be implicated in the pathological processes of PE, but the underlying mechanism remains elusive.

View Article and Find Full Text PDF

GATA binding protein 3 (GATA3), a member of the GATA family transcription factors, is a key player in various physiological and pathological conditions. It is known for its ability to bind to the DNA sequence "GATA", which enables its key role in critical processes in multiple tissues and organs including the immune system, endocrine system, and nervous system. GATA3 also modulates cell differentiation, proliferation, and apoptosis via controlling gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!