A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A genetic engineering strategy to eliminate peanut allergy. | LitMetric

A genetic engineering strategy to eliminate peanut allergy.

Curr Allergy Asthma Rep

Food Biotechnology Laboratory, Department of Food & Animal Sciences, PO Box 1628, Alabama A&M University, Normal, AL 35762, USA.

Published: January 2005

Peanut allergy is an IgE-mediated hypersensitivity reaction with an increasing prevalence worldwide. Despite its seriousness, to date, there is no cure. Genetic engineering strategies can provide a solution. The post-transcriptional gene silencing (PTGS) model can be used effectively to knock out the production of allergenic proteins in peanut by specific degradation of the endogenous target messenger RNA (mRNA). Ara h 2, the most potent peanut allergenic protein, was selected as a model to demonstrate the feasibility of this concept. Transgenic peanut plants were produced via microprojectile-mediated transformation of peanut embryos using a plasmid construct, which contains a fragment of the coding region of Ara h 2 linked to an enhanced CaMV 35S constitutive promoter. Molecular analyses, including polymerase chain reaction and Southern blots, confirmed the presence of the stable integration of the Ara h 2 transgene into the peanut genome. Northern hybridization showed the expression of the Ara h 2 transgene in all vegetative tissues of the mature transgenic peanut plants, indicating the stable expression of the truncated Ara h 2 transgene throughout the development of the plants. It is, therefore, reasonable to expect that the truncated Ara h 2 transgene transcripts will be synthesized in the seeds and will trigger the specific degradation of endogenous Ara h 2 mRNA. The next step will be to grow the transgenic peanut plants to full maturity for seed production and to determine the level of allergen Ara h 2.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11882-005-0058-0DOI Listing

Publication Analysis

Top Keywords

ara transgene
16
transgenic peanut
12
peanut plants
12
peanut
9
genetic engineering
8
peanut allergy
8
specific degradation
8
degradation endogenous
8
ara
8
truncated ara
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!