Fetal cardiomyocytes have been proposed as a potential source of cell-based therapy for heart failure. This study examined cellular senescence in cultured human fetal ventricular cardiomyocytes (HFCs). HFCs were isolated and identified by immunocytochemistry and RT-PCR. Cells were found to senesce after 20-25 population doublings, as determined by growth arrest, morphological changes and senescence-associated beta-galactosidase activity. Using the telomeric repeat amplification protocol assay, telomerase activity was undetectable in primary HFCs. Cells were transduced to express the human reverse transcriptase subunit (hTERT) of telomerase. This resulted in greatly increased telomerase activity, but no significant lifespan extension. Analysis of telomere length in primary HFCs revealed that the senescent phenotype was not accompanied by telomere shortening. Telomeres in hTERT-positive cells were elongated in comparison with primary cells, and elongation was retained in senescent cells. Levels of the tumor suppressor protein p16INK4A increased in all senescent cells whether telomerase-positive or -negative. Senescence was accompanied by a decline in transcript levels of the polycomb gene Bmi-1, Ets1 and Ets2 transcription factors, and Id1, Id2 and Id3 helix-loop-helix proteins, suggesting roles for these genes in maintenance of cardiomyocyte proliferative capacity. In addition to offering novel insights into the behavior of human fetal cardiomyocytes in culture, these findings have implications for the development of a cell-based therapy for cardiac injury using primary fetal heart tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1474-9728.2004.00137.x | DOI Listing |
PLoS One
December 2024
Department of Family Medicine, McMaster University, Hamilton, Canada.
Objective: Gestational diabetes mellitus (GDM) is a common medical complication of pregnancy that leads to adverse outcomes for both infants and pregnant people. Early detection and treatment can mitigate these negative outcomes. The COVID-19 pandemic strained healthcare and laboratory services, including GDM screening programs.
View Article and Find Full Text PDFPLoS One
December 2024
Specialized Neurological Practice, Neurological Office, Chrząstowice, Poland.
The study examines the morphometric development of the anterior cranial fossa in human fetuses and its clinical implications. The anterior cranial fossa, crucial for protecting the frontal lobes, was analyzed during prenatal development using innovative computer image processing techniques. We hypothesized that the growth of the anterior cranial fossa is not uniform throughout fetal development and that changing geometric relationships are important for possible therapeutic interventions in cases of congenital defects.
View Article and Find Full Text PDFJ Mol Histol
December 2024
Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.
Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest.
View Article and Find Full Text PDFMed Sci (Basel)
December 2024
Department of Perinatology, Ege University, İzmir 35000, Turkey.
Objective: This study aims to investigate the possible effects of gestational diabetes mellitus (GDM) on fetal heart structure and the relationship of this effect with maternal blood sugar control.
Materials And Methods: In this cross-sectional study, 19 women with GDM at 24-36 weeks of gestation (case group) and 21 healthy pregnant women at the same weeks of gestation (control group) were examined. Fetal heart structure was evaluated by ultrasonography; interventricular septum (IVS) thickness, right and left ventricular sphericity indices, global sphericity index (GSI) and cardio-thoracic ratio were also measured.
J Dev Biol
December 2024
Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
(1) Background: The exact etiology for gastroschisis, the most common abdominal defect, is yet to be known, despite the rising prevalence of this condition. The leading theory suggests an increased familial risk, indicating a possible genetic component possibly in the context of environmental risk factors. This systematic review aims to summarize the studies focused on the identification of a potential genetic etiology for gastroschisis to elucidate the status of the field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!