Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.

J Appl Microbiol

Laboratoire de biologie comparée des Protistes, Université Blaise Pascal, UMR CNRS 6023, Faculté de Pharmacie, Université d'Auvergne, Clermont-Ferrand, France.

Published: May 2005

Aims: The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants.

Methods And Results: The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174.

Significance And Impact Of The Study: This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2672.2004.02485.xDOI Listing

Publication Analysis

Top Keywords

activated sludge
20
mixed liquor
12
sludge plants
8
enteric viruses
8
liquid solid
8
viral concentrations
8
+/- log
8
sludge treatment
8
+/-
7
viral
6

Similar Publications

One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.

View Article and Find Full Text PDF

Methane production from anaerobic pre-treatment of municipal wastewater combined with olive mill wastewater: A demonstration study.

Water Sci Technol

January 2025

The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.

The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.

View Article and Find Full Text PDF

The rapidly expanding industrialization and global increase in economic activities have drawn attention to the concerning accumulation of waste. The textile industry plays a significant role in environmental pollution, especially in and water pollution. Harmful dyes used during the fabrication process are mixed with water bodies through sewage or wastewater ejected from industrial factories.

View Article and Find Full Text PDF

In addition to their advantages as promising methods for wastewater treatment, CWs exhibit poor performance in terms of N and P removal efficiency in the effluent of wastewater treatment plants. By focusing on this issue, we designed CWs integrated with a biochar-doped activated carbon cloth (ACC) electrode and alum sludge from water treatment plants as a substrate to achieve concomitant organic matter and nutrient removal efficiency. Compared with the use of one layer of alum sludge in CWs (CWs-C3) with ACC electrodes inserted in two layers, which uses one layer of alum sludge, a significant improvement in removal efficiency was achieved (96% for COD; 89% for TN; and 77% for TP).

View Article and Find Full Text PDF

Synergistic effects of quaternary ammonium compounds and antibiotics on the evolution of antibiotic resistance.

Water Res

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, 310058, China. Electronic address:

The usage of quaternary ammonium compounds (QACs) as disinfectants has surged dramatically during the COVID-19 pandemic and thereafter. QACs can promote antimicrobial resistance, but the combined effects of QACs and antibiotics in driving resistance evolution were yet revealed. This study aimed to evaluate antibiotic resistance of wastewater microorganisms under coexposure to typical antibiotics and the most widely used QAC, dodecyl dimethyl benzyl ammonium chloride (DDBAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!