Migration of keratinocytes is impaired on glycated collagen I.

Wound Repair Regen

Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Published: July 2005

Advanced glycation end products are the chemical modification of proteins induced by sugars in a hyperglycemic condition. Extracellular matrix proteins are prominent targets of nonenzymatic glycation because of their slow turnover rates. The aim of this study was to investigate the influence of nonenzymatic glycation of type I collagen on the migration of keratinocytes. The migration of keratinocytes was dramatically promoted on native type I collagen-coated dishes compared with that on uncoated dishes. When type I collagen was glycated with glycolaldehyde, large amounts of advanced glycation end products were produced; the glycated collagen I-coated dishes did not promote the migration of keratinocytes. Glycated collagen I did not affect the proliferative capacity of keratinocytes. However, the adhesion of keratinocytes to glycated collagen I was profoundly diminished in a glycation intensity-dependent manner. alpha2beta1 integrin is responsible for the migration and adhesion of keratinocytes to type I collagen. Pretreatment with glycated collagen I did not affect the expression level or functional activity of alpha2beta1 integrin on keratinocytes. These findings suggest that in the presence of glycated collagen I, keratinocytes lose their adhesive and migratory abilities. As the glycation did not modify the alpha2beta1 integrin on keratinocytes, it is suggested that glycation may diminish the binding capacity of type I collagen.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1067-1927.2005.130112.xDOI Listing

Publication Analysis

Top Keywords

glycated collagen
24
migration keratinocytes
16
type collagen
16
alpha2beta1 integrin
12
collagen
10
keratinocytes
9
advanced glycation
8
glycation products
8
nonenzymatic glycation
8
keratinocytes glycated
8

Similar Publications

Acquired reactive perforating dermatosis (ARPD) is characterized by its onset after the age of 18 years, umbilicated papules or nodules with a central keratotic plug, and the presence of necrotic collagen tissue within an epithelial crater. ARPD is strongly associated with systemic diseases such as diabetes mellitus (DM) and chronic renal failure, which may contribute to ARPD through factors including microcirculatory disturbances and the deposition of metabolic byproducts, including advanced glycation end-products and calcium. Here, we report a case of ARPD that improved following DM treatment and catheter-based interventions for peripheral artery disease (PAD).

View Article and Find Full Text PDF

Acid sphingomyelinase downregulation alleviates diabetic myocardial fibrosis in mice.

Mol Cell Biochem

January 2025

Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory, Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.

Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM).

View Article and Find Full Text PDF

(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.

View Article and Find Full Text PDF

Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its composition and organization. Collagen, the primary organic component of the ECM, is critical for maintaining structural integrity and biomechanical properties.

View Article and Find Full Text PDF

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!