In a 16-patient study, cultured fibroblast populations from normal skin were able to replicate an average of 14.8 +/- 2.2 times before becoming senescent, while fibroblast populations from the ulcer bed reached the end of their replicative life span after 7.2 +/- 1.9 population doublings (p= 0.001). Fibroblast populations from 10 of 16 pressure ulcers became senescent after fewer than five population doublings, whereas when populations of fibroblasts from adjacent normal skin were studied, only 2 of 16 became senescent within this same time period. In addition, only an occasional fibroblast from normal skin stained positively for senescence-associated beta-galactosidase compared to approximately 50% of equally aged ulcer bed fibroblasts (p = 0.0060). Senescent ulcer bed fibroblasts secreted significantly more plasmin than early passage ulcer bed fibroblasts (p= 0.0237), nearly six times as much plasmin as early passage normal skin fibroblasts (p < 0.0001), three and a half times the level of normal skin fibroblasts of the same age (11.52 +/- 4.58 microg/mg protein; p= 0.0003), and more than one and a half times the level of senescent normal skin fibroblasts (p= 0.0525). Senescent pressure ulcer fibroblasts generated significantly more plasminogen activator inhibitor-1 (1179.27 +/- 25.37 ng/mg protein) than normal skin fibroblasts of the same age (132.16 +/- 16.20 ng/mg protein; p = 0.0357). Also, senescent ulcer bed fibroblasts produced higher levels of transforming growth factor-beta1, but these were not significantly different from senescent normal skin fibroblasts. Although senescent ulcer fibroblasts produce elevated levels of plasminogen activator inhibitor-1 and transforming growth factor-beta1, the ratio of these factors to plasmin levels suggests that this may have little influence on extracellular matrix synthesis or maintenance in the chronic wound. These data show that cultured fibroblasts from most patient pressure ulcers profile a wound environment that is associated with an increasing population of senescent fibroblasts; however, factors within the chronic wound environment that promote cellular senescence remain unclear. We have proposed that a prolonged inflammatory response may be a contributing factor to the chronic wound condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1067-1927.2005.130110.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!