Gas plasma treatment: a new approach to surgery?

Crit Rev Biomed Eng

Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.

Published: May 2005

In this survey we analyse the status quo of gas plasma applications in medical sciences. Plasma is a partly ionized gas, which contains free charge carriers (electrons and ions), active radicals, and excited molecules. So-called nonthermal plasmas are particularly interesting, because they operate at relatively low temperatures and do not inflict thermal damage to nearby objects. In the past two decades nonthermal plasmas have made a revolutionary appearance in solid state processing technology. The recent trends focus on using plasmas in health care, for "processing" of medical equipment and even living tissues. The major goal of tissue treatment with plasmas is nondestructive surgery: controlled, high-precision removal of diseased sections with minimum damage to the organism. Furthermore, plasmas allow fast and efficient bacterial inactivation, which makes them suitable for sterilization of surgical tools and local disinfection of tissues. Much research effort must be undertaken before these techniques will become common in medicine, but it is expected that a novel approach to surgery will emerge from plasma science.

Download full-text PDF

Source
http://dx.doi.org/10.1615/critrevbiomedeng.v32.i56.20DOI Listing

Publication Analysis

Top Keywords

gas plasma
8
nonthermal plasmas
8
plasmas
5
plasma treatment
4
treatment approach
4
approach surgery?
4
surgery? survey
4
survey analyse
4
analyse status
4
status quo
4

Similar Publications

Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO atmospheres.

View Article and Find Full Text PDF

Pollution monitoring in surface water using field observational procedure is a challenging matter as it is time consuming, and needs a lot of efforts. This study addresses the challenge of efficiently monitoring and predicting water pollution using a GIS-based artificial neural network (ANN) to detect heavy metal (HM) pollution in surface water and effect of wastewater required discharge on the Euphrates River in Al-Diwaniyah City, Iraq. The study established using 40 water sampling stations and incorporates Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES) to assess HM levels.

View Article and Find Full Text PDF

Multispectral Integrated Black Arsenene Phototransistors for High-Resolution Imaging and Enhanced Secure Communication.

ACS Nano

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.

View Article and Find Full Text PDF

Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!