A series of natural product analogues based on helioxanthin (2), with particular attention to modification of the lactone ring and methylenedioxy group, were synthesized and evaluated for their antiviral activities. Among them, lactam derivative 18 and helioxanthin cyclic hydrazide 28 exhibited significant in vitro antiviral activity against hepatitis B virus (EC(50) = 0.08 and 0.03 microM, respectively). Compound 18 showed the most potent antiviral activity against hepatitis C virus (55% inhibition at 1.0 microM). Compound 12, an acid-hydrolyzed product of helioxanthin cyclic imide derivative 9, was found to exhibit broad-spectrum antiviral activity against hepatitis B virus (EC(50) = 0.8 microM), herpes simplex virus type 1 (EC(50) = 0.15 microM) and type 2 (EC(50) < 0.1 microM), Epstein-Barr virus (EC(50) = 9.0 microM), and cytomegalovirus (EC(50) = 0.45 microM). Helioxanthin lactam derivative 18 also showed marked inhibition of herpes simplex virus type 1 (EC(50) = 0.29 microM) and type 2 (EC(50) = 0.16 microM). The cyclic hydrazide derivative of helioxanthin 28 and its brominated product 42 exhibited moderately potent activities against human immunodeficiency virus (EC(50) = 2.7 and 2.5 microM, respectively). Collectively, these molecules represent a novel set of antiviral compounds with unique structural features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm034265a | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
Hydrogen sulfide (HS) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-HS-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, 59064-741, RN, Brazil.
The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a major challenge to global health. Targeting the main protease of the virus (Mpro), which is essential for viral replication and transcription, offers a promising approach for therapeutic intervention. In this study, advanced computational techniques such as molecular docking and molecular dynamics simulations were used to screen a series of antiviral compounds for their potential inhibitory effect on the SARS-CoV-2 Mpro.
View Article and Find Full Text PDFNat Commun
January 2025
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
Ubiquitin-specific protease 18 (USP18) is a multifunctional cysteine protease primarily responsible for deconjugating the interferon-inducible ubiquitin-like modifier ISG15 from protein substrates. Here, we report the design and synthesis of activity-based probes (ABPs) that incorporate unnatural amino acids into the C-terminal tail of ISG15, enabling the selective detection of USP18 activity over other ISG15 cross-reactive deubiquitinases (DUBs) such as USP5 and USP14. Combined with a ubiquitin-based DUB ABP, the USP18 ABP is employed in a chemoproteomics screening platform to identify and assess inhibitors of DUBs including USP18.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
This study investigates the application of levan- produced from Paenibacillus polymyxa SG09-12 as an antiviral agent against cucumber mosaic virus (CMV). A high-purity microbial levan was produced and purified using diafiltration. The chemical composition, structure, and functional groups of the levan were characterised using high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!